

# TECHNICAL DOCUMENTATION OF A US GULF OF MEXICO ECOPATH WITH ECOSIM MODEL

BY

# IGAL BERENSHTEIN, SKYLER R. SAGARESE, MATTHEW V. LAURETTA, MATTHEW A. NUTTALL, AND DAVID D. CHAGARIS

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149

May 2021

This page intentionally left blank



# TECHNICAL DOCUMENTATION OF A US GULF OF MEXICO ECOPATH WITH ECOSIM MODEL

By

#### IGAL BERENSHTEIN

Cooperative Institute for Marine and Atmospheric Studies Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway Miami Florida 33149-1098

#### SKYLER R. SAGARESE, MATTHEW V. LAURETTA, MATTHEW A. NUTTALL

Southeast Fisheries Science Center NOAA National Marine Fisheries Service 75 Virginia Beach Drive, Miami, Florida 33149

#### DAVID D. CHAGARIS

IFAS Nature Coast Biological Station and SFRC Fisheries and Aquatic Sciences Program University of Florida Gainesville, FL 32611

> U.S. DEPARTMENT OF COMMERCE Gina Raimondo, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Benjamin Friedman, Under Secretary for Oceans and Atmosphere

> NATIONAL MARINE FISHERIES SERVICE Paul Doremus, Assistant Administrator for Fisheries

> > May 2021

#### NOTICE

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NOAA Fisheries Service, or to this publication furnished by NOAA Fisheries Service, in any advertising or sales promotion which would indicate or imply that NOAA Fisheries Service approves, recommends or endorses any proprietary product or material herein or which has as its purpose any intent to cause or indirectly cause the advertised product to be used or purchased because of National Marine Fisheries Service publication.

This report should be cited as follows:

Berenshtein, Igal<sup>a</sup>, Sagarese, Skyler R<sup>b</sup>, Lauretta, Matthew V<sup>b</sup>, Nuttall, Matthew A<sup>b</sup>, Chagaris, David D<sup>c</sup>. 2021. Technical documentation of a U.S. Gulf of Mexico-wide Ecosystem model. NOAA Technical Memorandum. NMFS-SEFSC-751, 229 p. https://doi.org/10.25923/zj8t-e656.

Author Addresses

a. Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami Florida 33149-1098
b. Southeast Fisheries Science Center, NOAA National Marine Fisheries Service, 75 Virginia Beach Drive, Miami, Florida 33149
c. IFAS Nature Coast Biological Station and SFRC Fisheries and Aquatic Sciences Program University of Florida, Gainesville, FL 32611

Copies of this report can be obtained from: Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149

PDF version available at www.sefsc.noaa.gov

## **Executive summary**

This technical report details the data inputs and methods applied to develop an ecosystem model for the US Gulf of Mexico (GoM). The goal of the project is to support ecosystem-based fisheries management in the GoM through integration of biological and fishery information on species of commercial, recreational, and ecological importance. Of particular importance is the ability of the model to capture trade-offs associated with trophic interactions as well as fisheries bycatch. Accounting for such tradeoffs that occur across taxa, habitats, and fishing fleets is necessary for effective and sustainable ecosystem-based management of the GoM. The model was developed in Ecopath with Ecosim with a spatial domain including all state and federal waters (through 400 meters deep) of the northern GoM continental shelf and coastline. The GoM food web model includes 78 trophic groups, including three marine mammal groups, an aggregate seabird group, an aggregate sea turtle group, eight elasmobranch groups, 52 fish groups (18 of which are sub-divided into multiple life stages), nine invertebrate groups, three primary producers, and one detritus. Twelve commercial fishing fleets are modeled (bottom trawl (shrimp), bottom trawl (other), purse seine (menhaden), purse seine (other), pots and traps, handline, dredge, nets, pelagic longline, reef fish longline, shark longline, and other), and four recreational fleets (private angling, charter, headboat, and shore). Trophic interactions were defined according to a meta-analysis of 568 diet studies, many of which were conducted in the GoM. Nutrient forcing is based on the Mississippi-Atchafalaya River nutrient input. Time series of predicted biomass and catch from Ecosim were calibrated to estimates of stock biomass from Southeast Data Assessment and Review (SEDAR) and International Commission for the Conservation of Atlantic Tunas (ICCAT) stock assessments and relative abundance indices calculated from NOAA biological monitoring programs in the GoM, including the groundfish trawl survey from the Southeast Area Monitoring and Assessment Program (SEAMAP) and Pelagic Longline Observer Program. Model predictions generally agree with most reference time series and with single species stock-assessment  $F_{MSY}$  estimates (fishing mortality that results in maximum sustainable yield) obtained from SEDAR assessments of reef and pelagic fishes. We provide information about the calibration and diagnostics of the massbalanced (Ecopath) and time-dynamic (Ecosim) components of the model, as well as various model outputs and results describing key system aspects related to fisheries dynamics, biomass flow, ecological indices, and network analysis. This model can be used to compare top-down (fishing and predation) and bottom-up (nutrients, environmental drivers) processes in the GoM, evaluate potential effects of proposed harvest policies on the community, provide data products to support stock assessments (e.g., time series of natural mortality), and identify policy trade-offs between populations and the ecosystem. The model detailed here therefore provides a quantitative tool to support ecosystem-based fisheries management in the Gulf of Mexico.

## Acknowledgements

We thank all the researchers, technicians, students and volunteers who contributed to the collection of the various datasets utilized in the development of this model. During model planning and development, we are especially thankful for insightful discussions and input from Cameron Ainsworth (University of South Florida), Carl Walters (retired), Kim de Mutsert (University of Southern Mississippi), Amy Schueller (NOAA-SEFSC), Steve VanderKooy (Gulf States Marine Fisheries Commission) and Nick Farmer (Southeast Regional Office). We appreciate all of the feedback provided by academic researchers, Council staff, and other stakeholders at the 2017 Scoping Workshop and at numerous Gulf Menhaden Advisory Committee technical meetings throughout this project. This research was funded by RESTORE grant #NA17NOS4510098: "Ecosystem Modeling to Improve Fisheries Management in the Gulf of Mexico" and was carried out under the framework of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a Cooperative Institute of the University of Miami and the National Oceanic and Atmospheric Administration, cooperative agreement #NA17RJ1226.

## **Table of Contents**

| Executive summary                                 | iv   |
|---------------------------------------------------|------|
| Acknowledgements                                  |      |
| Table of Contents                                 | vi   |
| List of Figures                                   | viii |
| List of Tables                                    | ix   |
| Abbreviations and Acronyms                        | x    |
| Introduction                                      | 1    |
| Methods                                           | 3    |
| Study area                                        | 3    |
| Modeling framework                                | 4    |
| Ecopath                                           | 4    |
| Ecosim                                            | 5    |
| US Gulf-wide EwE model structure                  | 6    |
| Biomass Structure                                 | 6    |
| Fishing fleets                                    | 7    |
| Spatial domain                                    | 8    |
| Temporal structure                                | 8    |
| Ecopath model parameterization                    | 8    |
| Biomass ( <i>B</i> )                              | 9    |
| Biomass accumulation (BA)                         | 9    |
| Production per biomass ( <i>P/B</i> )             | 9    |
| Consumption per biomass ( <i>Q/B</i> ):           | 10   |
| Unassimilated consumption ( <i>U</i> ):           | 11   |
| Diet composition ( <i>DC</i> )                    | 11   |
| Refining predator-prey linkages for Gulf menhaden | 12   |
| Multi-stanza group inputs                         | 13   |
| Landings and discards                             | 13   |
| Commercial landings                               | 14   |
| Commercial discards                               | 15   |

| Recreational landings                         | 16 |
|-----------------------------------------------|----|
| Recreational discards                         | 17 |
| Landings and discards summary                 | 17 |
| Ecopath diagnostics and balancing procedure   | 17 |
| Ecopath mass balance procedure                | 18 |
| Network analyses                              | 18 |
| Ecosim model parameterization and calibration | 20 |
| Time Series Data                              | 20 |
| Biomass time series                           | 21 |
| Catch                                         | 22 |
| Fishing mortality                             | 22 |
| Fishing effort                                | 22 |
| Nutrient loading                              | 23 |
| Ecosim calibration                            | 23 |
| Vulnerability caps                            | 25 |
| FMSY- equilibrium yield and biomass           | 26 |
| Ecosim network analysis                       | 26 |
| Results                                       | 27 |
| Ecopath                                       | 27 |
| Pre-balance diagnostics and tuning            | 27 |
| Ecotrophic efficiency                         | 28 |
| Mortality rates                               | 29 |
| System summary statistics                     | 30 |
| Trophic Levels                                | 31 |
| Network analysis                              | 32 |
| Ecosim                                        | 33 |
| Ecosim base run configuration                 | 33 |
| Ecosim fits                                   | 33 |
| Ecosim $F_{MSY}$ estimation                   | 34 |
| Ecosim results summary                        | 34 |
| Conclusions                                   | 35 |
|                                               |    |

| Future work                                                                | 36      |
|----------------------------------------------------------------------------|---------|
| Literature Cited                                                           | 37      |
| Figures                                                                    | 47      |
| Tables                                                                     | 60      |
| Appendix 1 - summary of diet approach and gut content studies used to deve | lop the |
| diet matrix                                                                | 142     |
| Appendix 2 – menhaden plausible predators' analyses and data               | 209     |
| Appendix 3 – Ecosim calibration parameters                                 | 223     |

## List of Figures

| Figures                                                                                                                                       | 47        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 1. US Gulf-wide EwE model's spatial domain.                                                                                            | 47        |
| Figure 2. Forcing functions used in the US Gulf-wide EwE model.                                                                               | 48        |
| Figure 3. Biomass of functional groups versus trophic level.                                                                                  | 49        |
| Figure 4. Trends in biomass, production, consumption, resipiration, and vital ra-<br>across trophic levels                                    | tes<br>50 |
| Figure 5. Flow diagram of the US Gulf-wide Ecopath model.                                                                                     | 51        |
| Figure 6. The contribution of Gulf menhaden to the diets of its predators and predation mortality by age for Gulf menhaden.                   | 52        |
| Figure 7. Time series fits for group biomass.                                                                                                 | 53        |
| Figure 8. Time series fits for group catches.                                                                                                 | 55        |
| Figure 9. <i>F</i> <sub>MSY</sub> for selected species.                                                                                       | 57        |
| Figure 10. Relationship between estimates of $F_{MSY}$ derived from the US Gulf-wi EwE model and the estimates produced by stock assessments. | de<br>58  |
| Figure 11. Ecosim ecosystem indices of (A) trophic level of the catch and (B) Shannon's diversity index.                                      | 59        |

## List of Tables

| Tables                                                                            | 60       |
|-----------------------------------------------------------------------------------|----------|
| Table 1. Marine taxa included in functional groups of the US Gulf-wide EwE model. | ∃<br>600 |
| Table 2. Fishing fleets included within the US Gulf-wide EwE model.               | 63       |
| Table 3. Commercial fishing gears and classifications.                            | 64       |
| Table 4. Initial biomass ( <i>B</i> ) estimates.                                  | 667      |
| Table 5. Initial production to biomass ratio ( $P/B$ ) estimates.                 | 700      |
| Table 6. Range of natural mortality ( <i>M</i> ) estimates.                       | 75       |
| Table 7. Range of consumption to biomass ( $Q/B$ ) estimates.                     | 76       |
| Table 8. Final diet matrix.                                                       | 799      |
| Table 9. Retained bycatch estimates.                                              | 96       |
| Table 10A-B. Commercial catches by fleet.                                         | 97       |
| Table 11. Released bycatch estimates.                                             | 103      |
| Table 12. Commercial discards by fleet.                                           | 104      |
| Table 13. Recreational catches.                                                   | 106      |
| Table 14. Recreational discards.                                                  | 107      |
| Table 15. Total landings, discards, and catch for the 1980 Ecopath model.         | 109      |
| Table 16. Sources of time series for catch, biomass, and fishing mortality.       | 110      |
| Table 17. Source of fishing effort time series for each fishing fleet.            | 11413    |
| Table 18. Ecopath parameters from the balanced 1980 Ecopath model.                | 11614    |
| Table 19. Predator prey ratios for biomass and vital rates.                       | 12316    |
| Table 20. Pre-bal metrics for diagnostics.                                        | 117      |
| Table 21. Mortality rates of US Gulf-wide EwE model groups.                       | 109120   |
| Table 22. Ecosystem summary statistics.                                           | 125      |
| Table 23. Absolute trophic flows across the discrete trophic levels (I-IX).       | 12825    |
| Table 24. Fishing mortality rates achieving maximum sustainable yield ( $F_{MS}$  | sy).     |
|                                                                                   | 12928    |
| Table 25. Comparison of biomass and catch at start and end.                       | 129      |
| Table 26. Summary of data needs and considerations for applications.              | 132      |

## Abbreviations and Acronyms

| CV               | Coefficient of Variation                                                |
|------------------|-------------------------------------------------------------------------|
| EBFM             | Ecosystem-based Fisheries Management                                    |
| ESA              | Endangered Species Act                                                  |
| EwE              | Ecopath with Ecosim                                                     |
| FIM              | Fisheries Independent Monitoring                                        |
| FMP              | Fishery Management Plan                                                 |
| F <sub>MSY</sub> | The rate of fishing mortality that results in maximum sustainable yield |
| FWC              | Florida Fish and Wildlife Conservation Commission                       |
| FWRI             | (FWC) Fish and Wildlife Research Institute                              |
| GDAR             | Gulf Data Assessment and Review                                         |
| GoM              | Gulf of Mexico                                                          |
| HMS              | Highly Migratory Species                                                |
| ICCAT            | International Commission for the Conservation of Atlantic Tunas         |
| LME              | Large Marine Ecosystem                                                  |
| MMPA             | Marine Mammal Protection Act                                            |
| MRFSS            | Marine Recreational Fisheries Statistics Survey                         |
| MRIP             | Marine Recreational Information Program                                 |
| MSE              | Management Strategy Evaluation                                          |
| MSY              | Maximum Sustainable Yield                                               |
| SEAMAP           | SouthEast Area Monitoring and Assessment Program                        |
| SEDAR            | SouthEast Data Assessment and Review                                    |
| SEFSC            | SouthEast Fisheries Science Center                                      |
| SRHS             | Southeast Region Headboat Survey                                        |
| TL               | Trophic Level                                                           |
| TPWD             | Texas Parks and Wildlife Department                                     |
| US               | United States                                                           |

## Introduction

The US Magnuson–Stevens Fishery Conservation and Management Reauthorization Act (MSFCMA) aims to prevent overfishing and recover overfished stocks to maximize long-term fisheries yield and other benefits to stakeholders (MSFCMA 2007). Global fisheries stocks, as well as those in the US, are largely assessed and managed on a single-species basis via peer-reviewed stock assessments. The dynamics of marine ecosystems are complex with multiple interactions among species, the environment, and fishing fleets, any of which can effect stock productivity and sustainable catch projections. The MSFCMA also contains a number of provisions related to the integration of ecosystem considerations into fisheries management, ultimately setting the stage for Ecosystem-Based Fisheries Management (EBFM) (Pikitch *et al.*, 2004).

EBFM is critically important for the Gulf of Mexico (GoM), which is rich in natural resources such as fisheries and petroleum (Karnauskas *et al.*, 2013). At the same time, this ecosystem has been under immense environmental and anthropogenic pressures such as harmful algal blooms (HABs) (Sagarese *et al.*, 2017; DiLeone and Ainsworth, 2019; Perryman *et al.*, 2020), chemical pollution (Berenshtein *et al.*, 2020; Lewis *et al.*, 2020) and overfishing (Cowan *et al.*, 2011; O'Farrell *et al.*, 2017). In support of EBFM, ecosystem modeling can complement stock assessments and address questions related to marine pollution, hypoxia, HABs, climate change, invasive species, bycatch reduction, restoration efforts, marine protected areas, and management tradeoffs (O'Farrell *et al.*, 2017; Chagaris *et al.*, 2019).

Previous ecosystem modeling studies in the GoM have used a suite of modeling platforms that cover a range of study areas and habitats (O'Farrell *et al.*, 2017). The entire Large Marine Ecosystem (LME) has been modeled using Atlantis (Ainsworth *et al.*, 2015) and Ecopath (Vidal and Pauly, 2004) while other models have focused on specific geographic areas or habitats in the GoM such as the north-central GoM (Robinson *et al.*, 2015; de Mutsert *et al.*, 2016; Geers *et al.*, 2016), northern GoM reef ecosystems (Chagaris *et al.*, 2020b), the West Florida Shelf (WFS) (Okey *et al.*, 2004; Chagaris *et al.*, 2015; Grüss *et al.*, 2016; DiLeone and Ainsworth, 2019; Perryman *et al.*, 2020), and coastal GoM waters (Walters *et al.*, 2008). A wide variety of models have been applied for multiple management and scientific issues, including gauging the effect of oil spills (Ainsworth *et al.*, 2018; Chagaris *et al.*, 2020b), hydrological changes (de Mutsert *et al.*, 2016), and harvest limitations and management scenarios (Ainsworth *et al.*, 2015; Chagaris *et al.*, 2015; Grüss *et al.*, 2016).

Ecosystem models, such as Ecopath with Ecosim (EwE; Christensen and Walters, 2004) are being increasingly applied to understand the dynamics of natural ecosystems and, in particular, how economically and ecologically important species may respond to

changes in various environmental and anthropogenic drivers (e.g., nutrient loading, nutrient transport, oil spills, invasive species, climate change, and fishing pressure; Chagaris *et al.*, 2015, 2020; Serpetti *et al.*, 2017; Alava *et al.*, 2018; Corrales *et al.*, 2018). Over the last few decades, new software features have been developed for the EwE modeling framework including spatial dynamics (Ecospace; Christensen and Walters, 2004), tracking bioaccumulation of contaminants (Eco-tracer, Walters and Christensen, 2018), and evaluating management strategies (MSE, e.g., Surma *et al.*, 2018).

Ecosystem models can be particularly useful in the evaluation of fisheries management alternatives. However, ecosystem modeling efforts have traditionally been considered to provide strategic management advice, as opposed to tactical advice in the form of catch limits required for management (Grüss *et al.*, 2017). In particular, the potential complexity of these models coupled with a general lack of data to inform all aspects of model parameterization can create doubt in food web-based predictions that discourage direct use by fishery managers. However, synthesis of existing data collection programs (Grüss *et al.*, 2018) and systematic data collection in the US GoM has led to a more detailed representation of ecosystem dynamics. At the same time, improved modeling capacity has increased the utility of these models, which better inform fishery managers of effective harvest strategies in marine resource management (Chagaris *et al.*, 2019).

In this document, we present the methodology, data sources, and parameterization of the US Gulf-wide EwE model. This model represents those areas of the GoM under the jurisdiction of US fisheries managers and is primarily calibrated to biomass and catch trends of commercially and recreationally important marine stocks estimated from 1980 to 2016. The US Gulf-wide EwE model builds upon the 2005-2009 Ecopath model of Sagarese *et al.* (2017), and includes the following features:

(1) Increased number of federally (e.g., groupers and snappers) and internationally (highly migratory species) managed species modeled as functional groups,

(2) Increased resolution (i.e., age-structure) at which key fisheries species (e.g., red snapper *Lutjanus campechanus* and Gulf menhaden *Brevoortia patronus*) are modeled to capture ontogenetic shifts in feeding behavior,

(3) Improved diet matrix based on a comprehensive meta-analysis of diet composition of GoM predators from stomach content studies; and

(4) Updated biomass time series for SEDAR-assessed species, and other groups based on NOAA fishery dependent and independent surveys.

The primary purpose of the US Gulf-wide EwE model is to better inform decision makers of the trade-offs in alternative management actions while accounting for the system's trophic dynamics including predator-prey interactions, top-down and bottom-up processes (e.g., fishing and nutrient loading).

## Methods

## Study area

The Gulf of Mexico (GoM) Large Marine Ecosystem (LME) is a semi-enclosed, warmwater ecosystem that links to the Caribbean Sea and the Atlantic Ocean via the Yucatan, Loop, and Florida current systems. The US territory is largely in the northern GoM, supporting a number of marine, estuarine, and coastal communities with a diversity of marine wildlife and an abundance of natural resources such as petroleum and fisheries. The GoM is under constant natural and anthropogenic pressures that include over-fishing, oil spills, hurricanes, HABs, hypoxia and dead zones, all of which threaten the productivity of and services provided by this important region (Turner, 1997; Walsh *et al.*, 2006; Karnauskas *et al.*, 2013; de Mutsert *et al.*, 2016; Berenshtein *et al.*, 2020). Of particular concern in this region is the threat of habitat loss from oil spills, sea-level rise, and hurricanes in wetland areas and along barrier islands (Turner, 1997; Yáñez-Arancibia and Day, 2004; Karnauskas *et al.*, 2013; Spies *et al.*, 2016).

The dynamics of the GoM ecosystem are highly affected by nutrient inputs from the Mississippi River. The Mississippi River watershed covers more than 40% of the contiguous US and supplies more than 90% of GoM nutrients (Howe et al., 2020), including natural river-terrestrial nutrients and massive quantities of agriculture-related nutrients from industrial fertilizers and pesticides, which are linked to the extensive dead zones in the northern GoM (Rabalais et al., 2002). These same nutrients are transported throughout the Gulf depending on the strength and direction of prevailing winds and other circulation drivers. An additional contributor to the high primary productivity in the northern GoM is wind-driven coastal upwelling, which has been linked to regional HABs primarily along the WFS (Walsh et al., 2006). These nutrient inputs result in extensive primary productivity in the estuarine, coastal, and shelf regions of the GoM, supporting the growth of phytoplankton, seagrass, and algae that, along with detrital sources, serve as the trophic foundation for the highly productive fisheries supported by this ecosystem (Sagarese et al., 2017). Lower trophic level taxa such as forage fish (e.g., Gulf menhaden) and shrimp feed on primary producers and detritus (Karnauskas et al., 2013; Sagarese et al., 2017). These primary consumers, in turn, serve as prey for higher trophic level predators, including commercially and recreationally important stocks such as highly migratory species (e.g., sharks, tunas,

billfish), mackerels, snappers, and groupers (Vaughan *et al.*, 2011; Robinson *et al.*, 2015).

Most fisheries in the US GoM are managed by the Gulf of Mexico Fishery Management Council or, depending on the stock and its geographic distribution, jointly with the South Atlantic Fishery Management Council. HMS are managed both domestically (e.g., coastal sharks) and internationally, under the International Commission for the Conservation of Atlantic Tunas (ICCAT). There are more than 70 GoM stocks that are managed under Fishery Management Plans (FMPs) (Karnauskas *et al.*, 2017, 2019). Management regulations implemented mainly in the 1990s led to a decrease in the proportion of stocks undergoing overfishing, and a general trend of rebuilding has occurred in most stocks, which is expressed both in landings and revenues (Karnauskas *et al.*, 2019). Notably, many species are not regulated by any FMP because they represent a small fraction of the total biomass/landings in the US GoM (Karnauskas *et al.*, 2017), and several inshore associated species that are managed by individual Gulf States.

### **Modeling framework**

Ecopath with Ecosim (EwE; Christensen *et al.*, 2000; Christensen and Walters, 2004) is an ecosystem modeling framework that is widely used for exploring past, present and future trophic dynamics of ecosystems, often applied in the context of fishing, climate change, and marine pollution (Colléter *et al.*, 2015). It includes three main components: (1) Ecopath, a static mass-balanced snapshot of the ecosystem (Christensen and Walters, 2004); (2) Ecosim, a temporal-dynamic model expressed through a series of differential equations (Walters *et al.*, 1997); and (3) Ecospace, a spatially explicit time dynamic model (Christensen *et al.*, 2014, Steenbeek *et al.*, 2013, Walters *et al.*, 2010). The Ecopath component is based on an extensive collection of biological, ecological, and fishery data, whereas the Ecosim component requires time series of biomass, catches, fishing mortality, fishing effort, and nutrient forcing (Walters *et al.*, 1997; Christensen and Walters, 2004). The Ecospace component incorporates habitat maps, environmental preferences, and movement. Only the Ecopath and Ecosim components are described in this paper.

#### Ecopath

The static mass balance component of EwE represents a snapshot of the ecosystem for a given year or time period and serves as the initial starting values for time dynamic simulations. The Ecopath snapshot is governed by the production mass balance master equation, where the production term ( $P_i$ ) for each functional group (i) must be equal to

the sum of catches ( $Y_i$ ), net migration ( $E_i$ ), biomass accumulation ( $BA_i$ ), predation mortality ( $M2_i$ ), and other mortality  $MO_i$ .

$$Pi = Yi + Ei + BAi + M2i + M0i \tag{1}$$

The predation mortality ( $M2_i$ ) on group *i* is calculated as the sum of the products of the total consumption rate of all *j* predator groups that prey upon group *i* ( $Q_j$ ) and the fraction of prey (*i*) in the diets of predator (*j*) ( $DC_{ij}$ ).

$$M2i = \sum_{j=1}^{n} Qj \cdot DCij \tag{2}$$

Other mortality ( $MO_i$ ) represents all mortality that is not related to fishing or predation and includes disease and senescence.

$$M0i = Pi \cdot (1 - EEi) \tag{3}$$

Ecotrophic efficiency (*EE*<sub>i</sub>) is the proportion of the production ( $P_i$ ) that is utilized by the ecosystem and ranges from 0 (i.e., no biomass utilized in the ecosystem) to 1 (all biomass utilized in the ecosystem). The Ecopath mass balance equation is then written by combining Equations (1-3):

$$Bi \cdot (P/B)i \cdot EEi - Yi - Ei - BAi - \sum_{j=1}^{n} Bj \cdot \left(\frac{Q}{B}\right)j \cdot DCji = 0$$
(4)

where for group *i* the parameters include the biomass ( $B_i$ ), production/biomass ratio ( $P_i/B_i$ ),  $Y_i$ , consumption/biomass ratio for predator *j* ( $Q/B_j$ ), and  $EE_i$ . While inputs of  $Y_i$  and  $DC_{ij}$  are always required, only three of the four inputs for  $B_i$ ,  $P_i/B_i$ ,  $Q/B_j$ , and  $EE_i$  are required for each functional group. Ecopath would then compute the fourth.

#### Ecosim

Ecosim is the temporal biomass dynamic component of EwE and simulates changes in the ecosystem due to combinations of top-down (fishing and predation) and bottom-up (nutrients and primary production) drivers of group biomass dynamics. These dynamics are expressed as a set of differential equations (Walters *et al.*, 1997) where the change in biomass over time ( $dB_i/dt$ ) for functional group *i* can be calculated as:

$$dBi/dt = \frac{P}{Q}i \sum_{j=1}^{n} Qij + Ii - (M0i + Fi + ei) - \sum_{j=1}^{n} Qji$$
(5)

where the total consumption and conversion efficiency (P/Q) of food from all *n* prey groups by group  $i\left(\frac{P}{Q}i\sum_{j=1}^{n}Qij\right)$  and immigration (*I<sub>i</sub>*) represent biomass growth while predation  $(\sum_{j=1}^{n} Q_{ji})$ , fishing mortality (*F<sub>i</sub>*), other mortality (*MO<sub>i</sub>*), and emigration (*e<sub>i</sub>*) represent sources of biomass loss. Consumption  $(Q_{ij})$  is modeled from foraging arena theory (Ahrens et al., 2012) and partitions the entire prey population into two pools, one vulnerable to predation and the other invulnerable. The transfer rate between these two pools is represented by the EwE vulnerability parameters ( $V_{ii}$ ). These parameters control the degree to which the dynamics of individual functional groups are controlled by "top down" (e.g., predation mortality) and "bottom-up" (e.g., nutrient loads) processes (Christensen and Walters, 2004). When the vulnerability is very high ( $V_{ij}$ >100), the consumption of prey *i* by predator *j* increases nearly-linearly with increasing predator biomass (e.g. a Type-I functional response). In contrast, low vulnerabilities lead to a fairly constant predation rate regardless of fluctuations in predator biomass (i.e., asymptotic, type-2 functional response). The vulnerability parameters are the main tuning parameters in the Ecosim time series fitting optimization routine (Walters et al., 1997). This routine can also estimate primary production anomalies to further improve fits to time series inputs. Lastly, additional parameters describing prey switching, foraging time adjustments, risk-sensitive foraging behavior, and handling time effects can be manually adjusted to represent different assumptions about foraging processes.

### US Gulf-wide EwE model structure

#### **Biomass Structure**

The Ecopath model represents a mass-balance snapshot of the US GoM ecosystem for the year 1980, and its general structure is largely based on the model described in Sagarese *et al.*, (2017) with major differences described below. Modifications to functional groups were made following feedback from stakeholders during a 2017 Scoping Workshop (Chagaris *et al.*, 2019) and subsequent discussions. The dolphin functional group from Sagarese *et al.*, (2017) was separated into coastal and offshore components to capture differences in habitat and diet, and baleen whales were added as a single group. Further refinement of marine mammals and other protected species groups (e.g., turtles, sturgeon, manta rays) was limited by a lack of information, specifically estimates of biomass and trophic interactions.

The US Gulf-wide EwE model includes 78 functional groups, with a focus on federally managed species of commercial or recreational importance such as reef fishes, migratory pelagic species, coastal species, shrimp, menhaden, and crabs (Table 1). Functional groups include three marine mammal groups, an aggregate seabird group, an aggregate sea turtle group, eight elasmobranch groups, 52 fish groups (18 of which are sub-divided into multiple life stages as discussed below), nine invertebrate groups,

three primary producers, and one detritus group (Table 1). The model has greater taxonomic resolution for most fish groups, with decreasing taxonomic resolution towards lower trophic groups following a lower availability of data. Trophic levels (*TL*) of functional groups range from phytoplankton and detritus at the bottom of the food web (*TL* = 1) to marine mammals and sharks as apex predators (*TL* > 3).

The treatment of age classes for reef fish was modified to capture key ontogenetic changes in habitat selection and diet for select species, as well as fishery selectivity patterns. Age stanzas were modeled for seven species to capture ontogenetic variability in diet and fishing pressure (Table 1). King mackerel (*Scomberomorus cavalla*) and Spanish mackerel (*Scomberomorus maculatus*) were both represented by juveniles (0-1 yr) and adults (1+ yr). Gag grouper (*Mycteroperca microlepis*), red grouper (*Epinephelus morio*), and yellowedge grouper (*Mycteroperca interstitialis*) were represented by juveniles (0-3 yr) and adults (3+ yr), whereas red snapper (*L. campechanus*) was represented by three age groups: age-0 (0-1 yr), juveniles (1-2 yr), and adults (3+ yr). Juvenile red snapper were explicitly modeled to enable consideration of bycatch in the shrimp trawl fishery (Diamond *et al.*, 2010; SEDAR 52, 2018). Lastly, Gulf menhaden (*B. patronus*), a focal species in our model, was represented by five age groups to match the age structure in the stock assessment model: age-0 (0-1 yr), age-1 (1-2 yr), age-2 (2-3 yr), age-3 (3-4 yr), and age-4+ (4+ yr).

The aggregate shrimp functional group was separated by species into brown shrimp (*Farfantepenaeus aztecus*), white shrimp (*Litopenaeus setiferus*), and pink shrimp (*Farfantepenaeus duorarum*) to match stock designations for assessments as well as spatial overlap with their predators. Additional groups that are not targeted for fishing but are essential for a realistic food web model included: benthic and planktonic primary producers, zooplankton (includes jellyfish), infauna, mobile and sessile invertebrates, and detritus (water column, sediments, and dead discards).

#### **Fishing fleets**

Twelve commercial fishing fleets were included in the model (Tables 2 and 3). The commercial purse seine fishery for Gulf menhaden was responsible for almost half (48.1%) of all commercial catch (in weight) between 1980 and 2016 (Table 2). While finer resolution of commercial fishing fleets was presented in Sagarese *et al.*, (2017), commercial fleets were re-evaluated and combined for commercial nets (active, gill, passive, seine) and commercial pots and traps (fish, lobster, crab) due to inconsistent landings and confidential information on fishing effort.

Following classifications in the Marine Recreational Information Program (MRIP), four recreational fishing fleets were included in the US Gulf-wide model: headboat, charter,

private, and shore. Private anglers were responsible for more than half (68%) of all recreational catch (in weight) between 1986 and 2017 (Table 2).

#### Spatial domain

The modeled area covered the northern GoM, with approximately 310,000 km<sup>2</sup> of shelf habitat out to a bottom depth of 400 m extending from the southwestern border of Texas up to (but excluding) the Florida Keys. This domain also includes the region's inshore estuaries (Figure 1). The spatial domain of the US Gulf-wide EwE model initially included the US Exclusive Economic Zone, but this area was ultimately omitted given the lack of data from areas deeper than 400 meters (B Wrege, pers. Comm.<sup>1</sup>).

#### **Temporal structure**

The Ecopath model represented a static snapshot of the 1980 US GoM ecosystem, and the time-dynamic Ecosim model was calibrated to data from 1980 to 2016. A 1980 start year was chosen due to data availability, as many biological sampling programs were initiated at that time and most stock assessments include a start year of at least 1980. Availability of stock biomass estimates prior to the 1980s varies between stocks; however, there is a general lack of data or high uncertainty around information prior to 1980. In addition, estimates of recreational landings, discards, and fishing effort became widely available in 1981 after the implementation of the Marine Recreational Fisheries Statistics Survey, which has since transitioned into the Marine Recreational Information Program (Matter and Nuttall 2020a).

### **Ecopath model parameterization**

Inputs into the US Gulf-wide Ecopath model included *B<sub>i</sub>*, *P<sub>i</sub>/B<sub>i</sub>*, and *Q<sub>i</sub>/B<sub>j</sub>*, leaving EwE to estimate *EE<sub>i</sub>* for all functional groups. The majority of information used for model parameterization was collected from stock assessments (e.g., natural mortality inputs, estimates of catch in weight, population biomass, and fishing mortality rates), and published literature (e.g., equations used to derive Ecopath parameters and predator diet). Stock assessments were available for many of the functional groups and were developed either by NOAA SEFSC, FWC, or ICCAT. For other groups, estimates of biomass, mortality, diet, or production were derived from the literature or adopted from other GoM ecosystem models (Walters *et al.*, 2008, Geers *et al.*, 2016, Chagaris *et al.*, 2015, Sagarese *et al.*, 2017; see Tables 4 and 5 for details). The following sections explain the data sources and methods used for the Ecopath parameterization.

<sup>&</sup>lt;sup>1</sup> Southeast Fisheries Science Center, Fisheries Statistics Division.

#### Biomass (B)

When possible, initial biomass estimates (t km<sup>-2</sup>) were obtained from recent stock assessments of federally assessed species or survey data (Table 4). For higher trophic level functional groups that lack absolute biomass estimates, biomass inputs were calculated from mean annual catch estimates divided by fishing mortality (*F*) estimates obtained from stock assessments (Table 4). Catch and *F* estimates from 1980 were preferred, but estimates from close years (e.g., 1981) or averages across the first few years (e.g., 1980-1984) were used when there was high interannual variability around the base year. For unassessed species, parameter estimates were obtained from previous GoM Ecopath models (e.g., coastal GoM; Walters *et al.*, 2008).

Biomass inputs for assessed species were derived directly from the Stock Synthesis (SS) or Beaufort Assessment Model (BAM) report files. This information was available for gag, greater amberjack *Seriola dumerili*, cobia *Rachycentron canadum*, gray triggerfish *Balistes capriscus*, king mackerel, red grouper, red snapper, Spanish mackerel, tilefish *Lopholatilus chamaeleonticeps*, vermilion snapper *Rhomboplites aurorubens*, yellowedge grouper *Epinephelus flavolimbatus*, gray snapper *Lutjanus griseus*, hogfish *Lachnolaimus maximus*, and Gulf menhaden. To convert SS or BAM estimates to Ecopath biomass inputs, mean biomass at age ( $\overline{B}_{a,y}$ ) was calculated for each age *a* and year *y* in the assessment as the product of mean numbers (*N*) at age: ( $\overline{N}_{a,y} = N_{a,y} \cdot (1 - \exp(-Z_{a,y}))/Z_{a,y}$ ) and the mid-year mean body weight. For multistanza groups, the  $\overline{B}_{a,y}$  was summed over the ages included in each stanza and for non-multi-stanza groups, the  $\overline{B}_{a,y}$  was summed over all ages.

#### **Biomass accumulation (BA)**

Biomass accumulation rates ( $BA_i/B$ ) were calculated for all multi-stanza species as the biomass change between the first and the second years:

$$BA = (B_{1981} - B_{1980}) / B_{1980}$$
(6)

*BA* rates are relevant for functional groups that are not in equilibrium during the Ecopath base year (i.e., production does not equal mortality; see Equation 1), representing the instantaneous rate of change in the group's biomass.

#### Production per biomass (P/B)

In Ecopath, production per unit biomass (P/B) and total mortality (Z) are used interchangeably because P/B is equal to Z under equilibrium conditions. Specifically, the change in biomass (dB) equals production minus mortality, dB = Production – Mortality.

If biomass is in equilibrium, then dB = 0 and Production = Mortality. If we express production and mortality as rates times biomass, then  $P/B \ge B = ZB$ , i.e., P/B = Z.

For each functional group, *P/B* values were assumed equal to total mortality (Z = M+F or  $Z = M \times 2$  if no *F* estimate was available; Table 5). Mortality estimates from stock assessments were preferred for all fish functional groups. For assessed species, *F* was calculated from the assessment report files by first summing the total landings and dead discards (in weight) for each stanza or functional group (described below) and dividing the total fishery loss by the mean biomass  $\overline{B}_{a,y}$  to give an instantaneous fishing mortality rate. Natural mortality (*M*) is typically assumed to vary with age in the stock assessments, following a Lorenzen curve (Lorenzen, 1996). Therefore, for each Ecopath functional group or age stanza, *M* was averaged across ages and weighted by the mean numbers at age ( $\overline{N}_{a,y}$ ).

However, when such estimates were unavailable, natural mortality (M) was estimated using empirical equations (Pauly, 1980; Table 6):

$$\log(M) = -0.2107 - 0.0824 \cdot \log_{10} W_{\infty} + 0.6757 \cdot \log_{10} K + 0.4627 \log_{10} T$$
(7)

$$\log(M) = -0.0066 - 0.279 \cdot \log_{10} L_{\infty} + 0.6543 \cdot \log_{10} K + 0.4634 \log_{10} T$$
(8)

where  $W_{\infty}$  is the asymptotic weight (g), *K* is the growth coefficient of the Von Bertalanffy length equation, *T* is a temperature expression for the mean annual temperature of the water body (25°C assumed representative of mean annual conditions within the GoM), and  $L_{\infty}$  is the asymptotic length (mm).

If a proxy of F was unavailable, it was assumed that F was approximately equal to M or an F estimate from a similar species was applied. Additional details on P/B sources can be found in Table 5.

#### Consumption per biomass (*Q*/*B*):

Estimates of Q/B (yr<sup>-1</sup>) were obtained using the empirical equation of Pauly *et al.*, (1990):

$$\log\left(\frac{Q}{B}\right) = -5.04 + 1.94 \cdot \log_{10}T' - 0.151 \cdot \log_{10}W + 0.178 \cdot PF + 0.291 \cdot h \tag{9}$$

where *T*' is a temperature expression for the mean annual temperature of the water body (25°C assumed representative of mean annual conditions within the GoM), expressed as T' = 1000/°Kelvin, *W* is the asymptotic weight (g), and *PF* and *h* are dummy variables expressing food types; *PF* = 1 for apex/pelagic predators and *PF* = 0 for zooplankton feeders, and h = 1 for herbivores and h = 0 for detritivores and carnivores.

Estimates of Q/B (yr<sup>-1</sup>) were also obtained using the equations of Palomares and Pauly (1989) and (1998) for species with available estimates of aspect ratio (tail height/area)<sup>2</sup>:

$$\log\left(\frac{Q}{B}\right) = 7.964 - 0.204 \cdot \log W_{\infty} d - 1.965 \cdot T' + 0.083 \cdot A + 0.532 \cdot h + 0.398 \cdot d \tag{10}$$

where A is the fish form aspect ratio, and d is a dummy variable expressing food types, d = 1 for detritivores and d = 0 for herbivores and carnivores.

For each fish species falling within a functional group, estimates of Q/B were obtained using the equations above. The average Q/B value for each functional group (averaged across species and methods) was used as an initial Q/B value. For the marine mammal groups (e.g., bottlenose dolphin *Tursiops truncatus*), Q/B was estimated using the equation modified from Innes *et al.*, (1987) in Trites and Heise (1996). For the seabird group, Q/B was estimated using weight parameters presented in Okey and Mahmoudi (2002) and the equation given in Nilsson and Nilsson (1976). Additional details on Q/Branges from these equations and final Q/B estimates are shown in Table 7.

#### Unassimilated consumption (U):

There is little information to inform the relative consumption of prey not assimilated into predator growth. The default assumption of U = 0.2 for high trophic level groups (secondary consumers and higher) and U = 0.4 for lower trophic level groups (primary consumers, e.g., zooplankton) was therefore used, as recommended in Christensen *et al.*, (2005).

#### Diet composition (DC)

Initial values of diet composition for most functional groups are based on a probabilistic approach using maximum likelihood estimation previously applied in meta-analyses of trophic interactions (Ainsworth *et al.*, 2010). The method, applied in Sagarese *et al.*, (2016), includes four main steps: (1) drawing 10 random diet composition estimates (with replacement) for each predator from all available regions and/or studies; (2) from these random draws, estimating the weighted mean diet contribution of each prey item to predator diet, with weights based on how well individual diet records are believed to represent feeding behavior in the US GoM ecosystem; (3) repeating steps (1) and (2) 10,000 times to generate probability distributions of mean predator diet; and (4) fitting a Dirichlet distribution to the bootstrapped, average diet composition data for all prey items of each predator (Figure S1.1). The end-product is a marginal distribution of preyspecific predictions of the relative contribution of each prey item (by weight or biomass)

to predator diet. If at least 10 random observations were not available, as was typically the case for juvenile life stages, five observations were used in the maximum likelihood estimation approach. Quantification of diets for some functional groups required inclusion of studies outside the GoM given a paucity of diet data specific to the GoM, particularly for higher trophic level groups. A total of 568 references were used to quantify trophic interactions in the GoM, with 1,906 diet observations (i.e., 1 observation = 1 study for a single region or length-class) incorporated into the analysis (Table S1.1). Additional details on the approach, available data and assumptions are provided in Sagarese *et al.*, (2016) and (2017).

The diet matrix from the balanced US Gulf-wide Ecopath model is presented in Table 8. This table provides a summary of the trophic interactions defined in the EwE model after achieving mass balance (see results section for additional details on achieving mass balance). For highly migratory species, which likely spend a substantial portion of time outside the modeled area, we assumed that the majority of their diet was imported into the ecosystem. For bluefin tuna *Thunnus thynnus*, 90% of their diet was imported (i.e. obtained outside the modeled region), whereas 50% was imported for large oceanic sharks, other tunas, yellowfin tuna *Thunnus albacares*, billfish, and swordfish *Xiphias gladius*. In addition, we assumed about 30% dietary import for large coastal sharks, oceanic piscivores, and dusky shark *Carcharhinus obscurus*, and about 20% dietary import for pelagic coastal piscivores, blacktip shark *Carcharhinus limbatus*, and sandbar shark *Carcharhinus plumbeus*, due to the potential for these species to travel outside the modeled area.

#### Refining predator-prey linkages for Gulf menhaden

This model was designed, in part, to evaluate the effects of menhaden harvest on federally managed species. Due to the high uncertainty and lack of comprehensive data describing menhaden-predator interactions discussed in Sagarese *et al.* (2016), we used an indirect approach to confirm predator-prey interactions concerning menhaden (*Brevoortia sp*). The initial predator list of Gulf menhaden in Sagarese *et al.* (2016) was based on species identified to consume Gulf menhaden, *Brevoortia spp.*, or unidentified clupeids. We reviewed a variety of references including biological field reports and peerreviewed studies (Table S2.1) to identify species that co-occur with menhaden in the GoM. Information on the species composition of bycatch, which focused on species that could potentially prey upon menhaden (*Brevoortia spp.*), are summarized in Table S2.2. We refined the initial predator list of Gulf menhaden by individually confirming that menhaden (*Brevoortia sp.*) were a plausible prey item based on spatial overlap. Additional data sources were also examined for evidence of predation on menhaden, including the FWRI Fisheries-Independent Monitoring (FIM) diet database and Dr. Will Patterson's diet database collected from the northern GoM (Tarnecki and Patterson III,

2015). The final list of plausible predators was determined based on our current understanding of trophic interactions and the presence of menhaden predators in bycatch, as summarized in Table S2.3. The associated references of predator diet, by species, are provided in Table S2.4.

#### Multi-stanza group inputs

In Ecopath, *B* and *Q*/*B* for multi-stanza groups are entered for a "leading" stanza only, usually the oldest stanza or a life-stage fully selected to a fishery (e.g., age-2 Gulf menhaden), and *Z* is entered for all stanzas. Additionally, multi-stanza groups require inputs for the von-Bertalanffy growth parameter *K* and relative weight-at-maturity ( $W_{mat}/W_{inf}$ ) maturity. Based on these parameters, *B* and *Q*/*B* for non-leading stanzas are calculated assuming a stable age distribution. Because all multi-stanza groups have stock assessments, these parameters were taken directly from the assessment report files. The multi-stanza recruitment power parameter was set to 1 (default), which assumes that juveniles spend all of their time within the modeled system (Christensen *et al.*, 2005).

#### Landings and discards

Landings and discards (t km<sup>-2</sup> yr<sup>-1</sup>) were quantified for 1980. For assessed species, data from 1980 (or the closest year possible) were used. For un-assessed species, available data between 1980 and 1984 were averaged given considerable data variability and associated concerns with uncertainty. Since MRIP data began in 1981, landings and discards in 1981 were used as a proxy for 1980 catch (i.e., assumed equal). Discards were input into Ecopath as dead discards based on the available estimates in weights derived from stock assessments. Dead discards were calculated when possible using discard mortality rates obtained from stock assessments or for similar species. If no discard mortality information was available, a mortality rate of 100% was assumed.

To convert commercial and recreational landings and discards from stock assessments to EwE inputs required the conversion of catch in numbers to catch in weight and partitioning that catch between retained and dead discards. First, the total catch-at-age matrix was partitioned to retained and discarded fish using the model selectivity and retention functions. Fleet-specific mean body weight was then used to convert landings and discards numbers to metric tons. Lastly, landings and discards in metric tons were summed over ages within each model stanza (or over all ages for pooled groups). Additional details on landings and discards are provided in the next section.

#### **Commercial landings**

Landings of functional groups were obtained from stock assessment reports or model output files, when available. These data are considered the best available estimates of removals as they often include additional data processing steps such as assignment of landings for unidentified groups, examination of outliers, and a synthesis of landings estimates from multiple data sources. If no stock assessment estimates were available for a given species, commercial landings were obtained from the NOAA NMFS Fisheries Statistics Division (NMFS Fisheries Statistics Division; <a href="https://www.fisheries.noaa.gov/national/commercial-fishing/commercial-landings/annual">https://www.fisheries.noaa.gov/national/commercial-fishing/commercial-landings/annual</a>). Landings from unspecified gears were allocated across functional groups based on the relative proportion of landings in identified gear types. When available, landings from the International Commission for the Conservation of Atlantic Tunas online database (ICCAT; <a href="https://www.iccat.int/en/accesingdb.HTM">https://www.iccat.int/en/accesingdb.HTM</a>) were also considered for pelagic species.

Retained bycatch within the commercial purse seine fishery was treated as landings. The species composition and magnitude of retained bycatch in the menhaden purse seine reduction fishery were obtained from two studies: Guillory and Hutton (1982) and de Silva and Condrey (1997). The total catch of Gulf menhaden by the purse seine fishery in 1980 (701,229 t; SEDAR 63, 2018) was scaled by the proportion of retained bycatch observed in these studies to infer the total magnitude of bycatch by the purse seine fleet. Approximately 2.5% (by weight) of all reported purse seine landings between 1980 and 1981 were bycatch within the Louisiana menhaden fishery, although it is important to note that sampling occurred at the fish plants in this study (i.e., large bycatch species were likely discarded at sea; Guillory and Hutton 1982). Retained bycatch was also reported during 1994 and 1995 in de Silva and Condrey (1997) and was estimated at about 2.1% of total purse seine landings. The species composition of bycatch and landings of bycatch species (i.e., retained bycatch) were then calculated from the composition reported in each study. Since Guillory and Hutton (1982) did not distinguish between shark species within the bycatch, species-specific bycatch estimates for sharks were informed by de Silva et al., (2001), which sampled dead bycatch aboard commercial menhaden fishing vessels. The estimated retained bycatch in 1980 were similar in magnitude between these two studies, with total bycatch estimated as 0.0526 and 0.0564 t km<sup>-2</sup> yr<sup>-1</sup> respectively (Table 9).

In 1980, the majority of commercial landings in weight came from purse seines targeting menhaden (82%) and the shrimp bottom trawl (9%). The highest commercial landings in 1980 were of age-2 menhaden (45%), age-1 menhaden (27%), age-3 menhaden (8%), brown shrimp (5%), and white shrimp (2%; Table 10A-B).

#### **Commercial discards**

Commercial discards were primarily obtained from stock assessments, but additional sources were used when available for unassessed species. Bycatch estimates were obtained from the National Bycatch Report, First Edition Update 2 (National Marine Fisheries Service, 2013). Since bycatch estimates were reported for 2013, we scaled the estimates back to 1980 using the proportion of landings between years.

 $Bycatch_{1980} = Landings_{1980} * \frac{Bycatch_{2013}}{Landings_{2013}}$ (11)

This approach assumes that the species composition and relative proportion of bycatch (to total catch) is similar across years, which may not be true if fisher behavior or the distribution or abundance of fished stocks changes over time. Commercial discards for the GoM HMS Pelagic Longline, which were aggregated with Atlantic discards, were scaled to the GoM using the proportion of landings between these regions. For discards from both the GoM Coastal Migratory Pelagic Gillnet (included in commercial nets fleet) and Troll (included in commercial handline) fisheries, individual counts were converted to weights using median sizes of individuals. Although bycatch estimates in numbers are available for reef fish in the longline and vertical line fisheries, these were not converted to weights (i.e., discards assumed = 0 for these fleets) due to a lack of corresponding size information to infer weights.

Released bycatch within the commercial purse seine fishery was treated as discards. The species composition and magnitude of released discards were obtained from de Silva and Condrey (1997), which conducted onboard sampling in 1994 and 1995 to estimate released bycatch. First, a weighted average of the released species-specific bycatch in 1994 and 1995 was calculated with weights based on respective sample sizes (N<sub>1994</sub> = 235 sets; N<sub>1995</sub> = 257 sets). Second, the numbers of released bycatch were converted to weights using the average weight of species that were retained according to the study. Since these estimates were for 1994 and 1995, we scaled these estimates back to 1980 using the ratio of Gulf menhaden landings, assuming the proportions and species compositions remain static (Table 11).

In the 1980 snapshot, 96% of commercial discards came from the bottom trawl targeting shrimp (Table 12). Shrimp bycatch during this year was quite high because turtle exclusion devices (TEDs) were not required on shrimp vessels until 1987 in the Gulf of Mexico. Overall, in 1980, the highest commercial discards included demersal coastal invertebrate feeders (32%), Atlantic sharpnose shark *Rhizoprionodon terraenovae* (15%), and gray triggerfish (14%; Table 12).

#### **Recreational landings**

For the headboat recreational fishery, landings were obtained from the Southeast Region Headboat Survey (SRHS), which is a census of all headboat fishing activity from trip-level logbook records that report landings, fishing effort and biological sampling data, from which average weights were estimated (Fitzpatrick *et al.*, 2017). While the survey started in 1986 in the GoM, observations of fish weight were not collected until 1988. We therefore scaled the 1988 headboat landings estimates in weights back to 1980 using an adjustment factor (0.4) based on the relative number of active vessels between 1980 (SEDAR 42, 2015) and 1988 (from raw logbook files). This approach assumed that catchability of individual species would be similar over these years. Counts of registered headboat vessels in specific ports were used as a proxy for headboat effort in years where landings in weight were unavailable (1986-1988; 2013-2016).

For the private, charter, and shore recreational fisheries, landings were obtained from the MRIP, formerly the Marine Recreational Fisheries Statistics Survey (MRFSS) (Matter and Nuttall, 2020a). MRIP collects information on participation, effort, and species-specific catch. Data are collected to provide catch and effort estimates in two-month periods for each recreational fishing mode (shore, private, and charter), area of fishing (inshore, state Territorial Seas, US Exclusive Economic Zone), and state (except Texas). Total removals by fishery are estimated by MRIP and included fish landed, dead discards, and live releases (of which a proportion is assumed to die based on a release mortality estimate).

MRIP catch estimates for all species were obtained for the period 1981 to 2017 (personal communication<sup>II</sup>). At the time, MRIP was transitioning from the Coastal Household Telephone Survey (CHTS) to the Fishing Effort Survey (FES), but all stock assessments were still using estimates in CHTS currency. Since the US Gulf-wide EwE model is meant to explore potential management actions and their influence on the ecosystem, MRIP-FES data were explored (personal communication<sup>III</sup>) but ultimately not used because calibration factors to the CHTS were not yet available. Catch estimates in weight for the private mode were available in the CHTS time series back to 1981. However, the CHTS time series was missing charter and shore estimates between 1981 and 1985, which were not missing in the FES time series. Estimates for these modes in these years were scaled back to 1981 using the ratio of group-specific landings in 1986 between the CHTS and FES time series. For this analysis, we

<sup>&</sup>lt;sup>II</sup> National Marine Fisheries Service, Fisheries Statistics Division. March 11, 2018

<sup>&</sup>lt;sup>III</sup> National Marine Fisheries Service, Fisheries Statistics Division. July 18, 2018

assumed that the species composition and magnitude of catches in 1980 are similar to those in 1981.

In the 1980 snapshot, the majority of recreational landings came from private anglers (59%) and shore fishermen (21%), followed by charters (16%) and headboats (4%). Overall, recreational landings in 1980 were highest for seatrout (22%), demersal coastal invertebrate feeders (12%), and reef invertebrate feeders (9%; Table 13).

#### Recreational discards

Discards from each recreational fishery were obtained from stock assessments whenever possible. The MRIP dataset provided the number of fish released alive but did not include discards by weight. These self-reported discards in number of fish were converted to weight using the mean weight of each fish in the landings. This approach assumes that the sizes of fish discarded are similar to the sizes of fish landed, which may not hold if fish are discarded largely due to being undersized. When available, discard mortality estimates were used to estimate dead discards. A similar scaling approach was applied for recreational discards as discussed above for the landings.

In the 1980 Ecopath model, the majority of recreational discards came from private anglers (63%) followed by shore anglers (29%; Table 14). Overall in 1980, recreational discards were highest for demersal coastal invertebrate feeders (36%), pelagic coastal piscivores (10%), and sea trout (7%; Table 14).

#### Landings and discards summary

The Purse Seine (Menhaden) fishery yielded the highest catch of 2.32 t km<sup>-2</sup> yr<sup>-1</sup> followed by the bottom trawl shrimp fleet with a catch of 0.25 t km<sup>-2</sup> yr<sup>-1</sup>. The bottom trawl shrimp was responsible for 0.044 t km<sup>-2</sup> yr<sup>-1</sup> of discards, which was the highest among the fleets (Table 15). For all fishing fleets, landings were considerably larger, with discards accounting for up to XX percent of total catch (Table 15).

### Ecopath diagnostics and balancing procedure

The Pre-balance diagnostics procedure (PREBAL) of Link (2010) was followed to ensure biological realism of the Ecopath estimates. Biomass (*B*), production (*P*), consumption (*Q*), respiration (*R*), and vital rates (*P/B*, *Q/B*, and *R/B*) were examined across all taxa and *TLs*. Each was log<sub>e</sub> transformed and expected to decrease with increasing *TL*. Biomass estimates were expected to range 5-7 orders of magnitude between the highest and lowest *TLs*, while ratios of biomass and vital rates between predators and prey (via guilds, defined and assigned in Table 1) are expected to remain below one (Link, 2010). Biomass of each functional group relative to primary producers, production of each functional group relative to primary producers, and *P*/*B* of each functional group relative to primary producers are expected to remain below 1. Estimates of *P*/*Q* were calculated across taxa and were expected to fall between 0.1 and 0.3 (Darwall *et al.*, 2010; Link, 2010). For each functional group, the ratio of the consumption of that functional group to its production (ratio equivalent to *M2*/*Z*) was expected to remain below one (i.e., for mass-balance, prey production is higher than predator consumption), whereas the ratio of the consumption by that functional group to its production (ratio equivalent to *method*) was expected to exceed one (i.e., metabolic inefficiencies require the production of functional groups to be smaller than its consumption by predators) (Link, 2010). Lastly, the ratio of total fishing removals to consumption of each group was expected to remain below one, with values above 1 suggestive of system imbalance (Link, 2010). In addition to the PREBAL diagnostics, the ecological and thermodynamic rules listed in Darwall *et al.*, (2010) were examined: Ecotrophic Efficiency < 1, Net Efficiency < Gross food-conversion Efficiency (*GE*), and Respiration / Assimilation Biomass < 1.

#### Ecopath mass balance procedure

During model balancing, model inputs including biomass, P/B, Q/B and diet composition were re-evaluated and modified to attain mass-balance (while maintaining PREBAL criteria within acceptable limits). Initial balancing efforts focused on bringing higher trophic level groups into balance first, and then working down to lower trophic level groups. The parameters most frequently changed were the input diet compositions, which were thought the most uncertain of the input parameters. Additional changes were made to some biomass estimates, such as non-assessed aggregate groups (e.g., invertebrate feeder groups) where biomass estimates were considered uncertain. Other modifications that were entertained in the process included shifting the Q/B estimate from the average for the group to another plausible estimate (e.g., within the range of estimates) or modifying the P/B estimate for non-assessed groups.

#### **Network analyses**

Ecopath's network analysis builds on concepts from ecological network analysis (Ulanowicz, 1986) and enables a holistic view of trophic interactions, providing information regarding the ecosystem's health, maturity, efficiency, and resilience. We used the following network indicators: trophic level decomposition, transfer efficiency, relative ascendancy, connectance, and system omnivory to describe the modeled system as a whole. Trophic level decomposition describes the distribution of biomass flow between aggregated discrete trophic levels at the functional group level (Christensen *et al.*, 2005). Discrete trophic level represents the fraction of energy sourced from a given step in a trophic sequence/path, such that for example, partial

consumption of primary producer A by primary consumer B represents discrete level I; partial consumption of primary consumer B by secondary consumer C represents discrete level II; partial consumption of secondary consumer C by tertiary consumer D represents discrete level III, etc. Per functional group, the value in each discrete trophic level represents the fraction of energy that can be traced to that specific level, for example, discrete level I for the primary producer functional groups equals one because 100% of its energy comes from the first discrete trophic level. Fractional trophic levels, on the other hand, are group-centric and are computed in Ecopath as 1+ the weighted mean of each preys' trophic level, with the following general partitioning to trophic levels: 1- primary producer, 2-herbivores, 3- predators that eat herbivores, 4- predators that eat other predators, 5- Apex predators that have no predators. Fractional trophic levels usually do not exceed five, but discrete trophic levels often do. Transfer efficiencies between successive discrete trophic levels are calculated as the ratio between the sum of the exports from a given trophic level, plus the flow that is transferred from one trophic level to the next, and the throughput on the trophic level (Christensen et al., 2005). Mean transfer efficiency is computed as the geometric mean of transfer efficiencies for discrete trophic levels II-IV.

Relative ascendancy is a measure of ecosystem network efficiency, or organization, and is computed as the ratio between ascendency and developmental capacity. Ascendency, in turn, represents the average mutual information in a system (measured in flowbits) scaled by system throughput (i.e., the sum of all flows in the system). For example, a system with high ascendancy would imply that the flow of energy through that system is well known and highly deterministic (and also more fragile) whereas low ascendancy implies disorganization in trophic structure. It is hypothesized that systems with moderate ascendancy are more resilient because alternative energy pathways exist when another pathway is disrupted. Developmental capacity represents the upper limit of ascendency for a given system (Ulanowicz and Norden, 1990; Christensen et al., 2005). Connectance refers to the ratio between the number of actual trophic links and the total number of possible links and is expected to increase along with a system's maturity (Odum, 1971). However, it is also dependent on the taxonomic resolution of the system, which limits the capacity for a meaningful comparison between different systems. System's omnivory index, on the other hand, is more suitable for systems' comparison, and is computed as the average consumer omnivory index (the variance of the consumer's prey groups trophic levels) of all consumers weighted by the logarithm of each consumer's food intake, representing the degree to which a system structure is web-like (Christensen and Walters, 2004).

Summary statistics of the US GoM Ecopath model were compared to statistics from other available Ecopath models of the GoM and Ecopath models from other LMEs, most of which were downloaded from Ecobase (Colléter *et al.*, 2015; Geers *et al.*, 2016

values obtained from Sagarese *et al.*, 2017). Summary statistics related to trophic ecology included: (1) Basic model parameters including snapshot year/s and the number of biomass pools, which provide information about the taxonomic richness as well as temporal range, and are important due to region-specific interannual variability in fishing and environmental drivers; (2) Trophic indicators, including the sums (t km<sup>-2</sup> yr<sup>-1</sup>) of consumption, exports production, total system throughput (sum of all flows in the system), and net system production; (3) Fishery indicators including total catch and mean trophic level of the catch, which provides information with respect to the total harvested biomass, and whether the fisheries are primarily supported by low-trophic level groups versus predatory-based catch; (4) Energetic indicators include total primary productivity/total respiration and total productivity/total biomass, which serve as indicators to the system's maturity such that in immature systems, production takes a larger portion compared to mature systems (Odum, 1971); and (5) Network indicators, including respiratory flows, flows into detritus, connectance, system omnivory, and relative ascendency.

### Ecosim model parameterization and calibration

#### **Time Series Data**

The time-dynamic component of EwE, Ecosim, is the primary means for which to simulate harvest policies and environmental change. Prior to doing so, Ecosim models must first be calibrated and able to re-construct historical patterns of biomass, catches, and nutrient input. The main tuning parameter for this adjustment is the predator-prey vulnerability parameter, which defines the degree to which prey consumed is dependent on the predators' density. There are two basic types of time series data used in Ecosim: (1) reference and (2) forcing time series. Reference time series are treated as observed values during the model fitting process whereas forcing time series are primarily used to drive fishing and environmental patterns. Reference time series typically include group biomass (relative or absolute) and group specific catch (absolute or relative, with landings and discards combined or separated), but may also include population mean weight information and estimates of total mortality rate. Reference time series may be weighted (1 weight per time series) to account for differences in relative uncertainty in individual data sources and model groups. Forcing time series typically include groupspecific fishing mortalities, fleet-specific fishing effort, and environmental forcing functions (nutrients, river discharge).

In total, there were 109 reference time series and 51 forcing time series used in the calibration procedure of the US Gulf-wide Ecosim model. The majority of the time series covered the entire modeled time period (1980-2016) and were derived from stock assessments and fisheries independent monitoring data. While time series of relative

biomass and catch were used for reference time series (to which Ecosim model predictions were calibrated), estimated values of fishing mortality and effort were applied as forcing functions to drive the model for assessed and unassessed groups, respectively. Following Heymans *et al.*, (2016), time series weights were assigned based on the inverse of the mean coefficient of variation (CV) across all years included in each time series. Weights were applied to reference time series for biomass and catch, such that the weight of each reference time series was calculated as the inverse of the mean CV across all years with data. This enables higher weights for more precise time series, which provide more influence on model fit to these time series. Otherwise, a default weight of 1 was used (Table 16). Details on time series construction are provided below.

#### **Biomass time series**

For assessed species, and their multi-stanza groups, time series of stock biomass were obtained from SEDAR stock assessment models and treated as relative biomass indices within Ecosim (Table 16). Biomass time series were calculated from stock assessment reports in the same mean numbers-at-age approach as that used to derive Ecopath inputs.

When available, indices of relative abundance from individual (species-specific) assessments were used for multi-species functional groups. For example, an index of relative abundance was available from SEDAR 49 (SEDAR 49, 2016) for shallow water grouper (video index of yellowmouth grouper *Mycteroperca interstitialis*; Table 16). This index of relative abundance was considered the best available estimate of relative abundance for these groups, assuming the trends for individual species followed those of the species group.

For HMS bluefin tuna, yellowfin tuna, other tuna, swordfish, and billfish, annual indices of relative abundance were developed using data from the Pelagic Longline Observer Program (Table 16). Index standardization assumed a negative binomial distribution and utilized a generalized linear regression of species count with an effort (number of hooks) offset. Fixed effect covariates included year, target species, season, sea surface temperature (weekly average), time of day (bivariate [day, night]), hook type, and hooks per float (proxy for set depth). The annual abundance index was calculated as the least squares mean by year.

For some of the remaining (unassessed) species and demersal functional groups, relative biomass indices were developed using a delta Generalized Linear Model (GLM) approach applied to data from the SEAMAP groundfish bottom trawl survey (Table 16). Influential environmental variables explaining the variation in relative abundance were

selected using a forward stepwise approach (Lo *et al.*, 1992; Maunder and Punt, 2004). The confidence interval for the index was obtained by using Monte-Carlo simulations.

#### Catch

For assessed functional groups, time series of commercial and recreational catches were obtained directly from the stock assessment output files (Table 16) and calculated following the same method used to estimate initial Ecopath inputs. For the remaining species, time series of catches were obtained by adding the commercial NOAA landings with the recreational landings from MRIP, SRHS, and the Texas Parks and Wildlife Department (TPWD). Landings estimates from the Texas sport-harvest monitoring program were used for 1983+ (Matter and Nuttall 2020b). Landings from Texas were available in numbers from both charter and private modes and were converted to weights using the average size of each species in the MRIP dataset, assuming that sizes landed would be similar across the GoM.

The catch time series was a single, total catch, summed over all fleets and gears. Retained bycatch in the menhaden purse seine fishery (Table 9) was also included within the catch time series where available to capture removals of non-target species from the ecosystem.

#### Fishing mortality

For assessed species, time series of fishing mortality (*F*) were computed as  $F = C/\overline{B}$ , where  $\overline{B}$  is the mean, or mid-year biomass, and *C* is the stanza or functional group total harvest (landings) calculated from catch-at-age matrices, selectivity and retention patterns, and mean body weight (Table 16). Dead discards were not included in the time series of landings or F at this time. If no *F* time series was available for a given species or functional group, then fishing mortality was driven by the fleet specific trend in effort.

### Fishing effort

Time series of commercial fishing effort by fleet and recreational fishing effort by mode were obtained from stock assessment documents when possible (Table 17, Figure 2A). For the remaining commercial fishing fleets, time series of commercial effort were obtained from the NMFS Vessel Operating Units (VOU) database (<u>https://www.fisheries.noaa.gov/inport/item/5380</u>), which provides a general sense of trends in fishing effort over time (in terms of number of vessels or gear fished). The NMFS VOU Survey is an annual survey of the active participants in the fisheries. The database includes physical characteristics of the vessels (e.g., gross tonnage) and the operating or fishing characteristics of the vessel (e.g., type of gear, number, and

quantity of gear). Time series of effort based on the NMFS VOU database were first smoothed using a moving average to help reduce the relatively high variability in effort estimates for obscure gears (e.g., of other, other purse seine, and other bottom trawls) and to obtain a more realistic trend in fishing effort (e.g., effort for other gear dropped six-fold between 1993 and 1996, likely due to sparse observations or incomplete reporting). If time series were incomplete, a moving average was used to fill in missing values since a forcing function in Ecosim cannot have any missing values. Further, all effort time series were scaled so the starting value was 1. Time series of recreational fishing effort by mode (in number of trips) were obtained from MRIP, SRHS, and TPWD (Table 17).

#### **Nutrient loading**

Monthly nutrient loads (t mo<sup>-1</sup>) delivered to the GoM from the Mississippi-Atchafalaya River Basin (<u>https://toxics.usgs.gov/hypoxia/mississippi/nutrient\_flux\_yield\_est.html</u>) were used as a direct proxy for the primary productivity of phytoplankton (Figure 2B). The nutrient loads include the sum of total Nitrogen (N) and total Phosphorus (P) scaled to the first value total N+P value (i.e., 1980). This scaled time series was used as the EwE nutrient loading forcing function. Proportion of free nutrients was set to 0.5 according to Ecosim default, representing an effect of nutrient limitation (Christensen *et al.*, 2005). Ecosim assumes a simple Michealis-Menton nutrient uptake relationship, and these free nutrients were available for uptake by all primary producers in the model. Primary producers with higher production rates (i.e. phytoplankton) assimilate free nutrients at a higher rate than producers with lower production rates (i.e. seagrasses).

#### **Ecosim calibration**

Ecosim "best practices" (Heymans *et al.*, 2016, Christensen *et al.*, 2005) were largely followed in calibrating our model to time series of biomass and catch, while forcing the model with time series of nutrient loads, fishing effort, and fishing mortality (Figure 2). Using the EwE *fit to time series* module, we applied five recursive vulnerability searches and three consecutive primary production (PP) anomaly searches (Chagaris *et al.*, 2020a). As the main tuning parameters for the Ecosim time series fitting routine, the vulnerability parameters ( $V_{ij}$ ) represent the exchange rate of prey biomass between invulnerable states (resting, hiding) to vulnerable foraging arenas where they are subjected to predation. Low vulnerability settings (~1-2) restrict the flow of prey biomass into vulnerable pools, which limits the amount consumed by predators regardless of predator biomass, resulting in bottom-up dynamics. High vulnerability settings (>10) allow for fast exchange into the vulnerable pool, which allows consumption by predators, and therefore predation mortality, to increase as predator populations increase, resulting in top-down dynamics. Effectively, low  $V_{ij}$  restricts consumption and therefore biomass gains by predators and keeps predation mortality rates of prey near

their Ecopath baseline levels, while high  $V_{ij}$  allows for increases in consumption, which leads to increases in predator biomass and predation mortality.

Through the Ecosim *fit to time series* tool, the model's fit to each reference time series is sequentially improved. There is a single vulnerability parameter for each predatorprey interaction and the most sensitive  $V_{ij}$  are first identified through a sensitivity search. The routine applies small changes to each  $V_{ij}$  to determine which parameters have the largest effect on model fit, defined by the sum of squared differences (SSE) between Ecosim predictions and reference time series. The *K-1* most sensitive vulnerabilities are then 'turned on' for estimation, where *K* is the number of reference time series used in calibration. In our application of the Ecosim *fit to time series* routine, the maximum number of vulnerability parameters estimated during any single estimation run was 107. Because Ecosim models are prone to local minima, it is important to repeat the minimization routine several times. At each iteration, a different set of parameters will be estimated, and this process is repeated until no further reduction in SSE is obtained. A convergence on a solution is normally obtained after 5-7 repeated search iterations (Chagaris *et al.*, 2020a).

For several unassessed groups (shallow water groupers, deep water groupers, and red drum) for which Gulf-wide F time series were not available, catch time series were defined as forced catches (type = -6). Similarly, for groups with high uncertainty associated with their biomass estimate (e.g., swordfish and dusky shark), catch time series were defined as a relative catch (type = 61) to avoid issues of scaling between catch and biomass (Table 16). Catch time series of the younger stanzas were not included in the Ecosim calibration due the high uncertainty associated with removals of early life stages (i.e., high uncertainty in bycatch of juveniles).

For several highly migratory species, adjustments were made due to discrepancies between the magnitude of catch in Ecopath and Ecosim. These discrepancies are mainly due to the consideration of dead discards in Ecopath but not in Ecosim time series (which are mostly based on NOAA landings data for unassessed species). The adjustments that were applied are listed below:

- Sandbar shark Ecopath total catch (0.0004 t km<sup>-2</sup> yr<sup>-1</sup>) vs Ecosim total catch (0.000012 t km<sup>-2</sup> yr<sup>-1</sup>). Longline shark landings were omitted from the Ecopath input, which reduced the absolute difference between Ecopath and Ecosim catches from 0.00039 to 0.000234 t km<sup>-2</sup> yr<sup>-1</sup>
- Large oceanic sharks Ecopath total catch (0.00036 t km<sup>-2</sup> yr<sup>-1</sup>) vs Ecosim total catch (0.0000113 t km<sup>-2</sup> yr<sup>-1</sup>). Longline pelagic landings were omitted from the Ecopath input, which reduced the absolute difference between Ecopath and Ecosim catches from 0.00039 to 0.0000096 t km<sup>-2</sup> yr<sup>-1</sup>.

- Atlantic sharpnose shark Ecopath total catches (0.00735 t km<sup>-2</sup> yr<sup>-1</sup>) vs Ecosim total catches (0.000021 t km<sup>-2</sup> yr<sup>-1</sup>). Ecosim catch time series data included landings only, and dead discards for this group were extremely high in Ecopath (0.0067 t km<sup>-2</sup> yr<sup>-1</sup>). We scaled the time series catches based on the discards/landings ratio.
- Yellowfin tuna the first two years of Ecosim catches were low (<0.000015 t km<sup>-2</sup> yr<sup>-1</sup>), with subsequent years increasing in nearly an order of magnitude. We excluded these two first years from the time series in Ecosim since they may not properly represent the true catches. The Ecopath catch input value was based on the year 1982 for the same reason. This reduced the absolute difference between Ecopath and Ecosim catches from 0.00216 to 0.00192 t km<sup>-2</sup> yr<sup>-1</sup>.
- Billfish the first year of Ecosim catches time series were close to zero (<0.0000062 t km<sup>-2</sup> yr<sup>-1</sup>), with subsequent years increasing in nearly two orders of magnitude. We excluded this first year, as it may not properly represent the true catches. This reduced the difference between Ecopath and Ecosim catches from 0.00151 to 0.00086 t km<sup>-2</sup> yr<sup>-1</sup>.

As an additional diagnostic step, we projected the model 20 years into the future to evaluate the groups' response to no-fishing and extremely high fishing mortalities to make sure that the modeled ecosystem responds as expected. For example, we expected biomass to increase with a decrease of *F* and vice-versa. We also expected the values to stabilize and remain within a biologically reasonable range without diminishing to zero, or continuously increasing (Chagaris *et al.*, 2015). Modifications to the *vulnerability* and *feeding time adjustment rate* parameters solved these problems in Ecosim. The biomass of the yellowfin tuna increased at an unrealistic rate in these projections. To solve this, we set this group's *feeding time adjustment rate* to 0.5 instead of the default of 0. In contrast, the groups of oceanic piscivores, reef piscivores and benthic coastal invertebrate feeders were completely diminishing in the 20 year projections due to increased predation mortality. This was solved by adjusting the minimal vulnerabilities of these groups to 1.05 instead of 1 (see more details about vulnerability caps below).

#### Vulnerability caps

The Ecosim SSE minimization is unconstrained, meaning that there are no penalized bounds in the optimization function and parameters are not informed by priors or specification of the variance. When there is poor contrast in the data, this often leads to  $V_{ij}$  estimated at upper and lower bounds (1.0 and 1e10), which can cause unstable dynamics in simulations, and especially in future long-term projections. Since the vulnerability parameters represent the theoretical maximum predation mortality rate (*M2*) relative to the Ecopath baseline *M2*, we set  $V_{ij}$  to represent assumptions about the
relationship between predation mortality and natural mortality of the prey. For example, we assumed that the theoretical maximum *M*<sup>2</sup> of a single predator on a single prey item cannot account for more than half the natural mortality of the prey. To adjust the vulnerabilities accordingly, we set a vulnerability cap equal to the ratio of theoretical maximum *M*<sup>2</sup> and baseline Ecopath *M*<sup>2</sup> rates, where  $V_{cap} = (M2_{cap} * M)/M2_{base}$ , such that  $M2_{cap}$  is a multiplier on the Ecopath prey *M*. These vulnerability caps were applied to the estimated  $V_{ij}$  after the repeated search was complete (Chagaris *et al.*, 2020a).

### FMSY- equilibrium yield and biomass

An important test of model performance is evaluating the equilibrium relationship between total yield and biomass (Heymans *et al.*, 2016). From this relationship, one can assess: (1) group productivity relative to the removals from fisheries, and (2) the ecosystem's carrying capacity for the group in question. In addition, important fishery benchmarks such as  $F_{MSY}$ ,  $F_{0.1}$ , and  $B_0$  can be determined from  $F_{MSY}$  plots, and compared against stock assessment-derived benchmarks.

We used the MSY search routine to compute equilibrium estimates of  $F_{MSY}$ , which runs Ecosim long-term (40 yrs) simulations over a range of *F* values and record the resultant response in group catch and biomass (Christensen *et al.*, 2005, Christensen and Walters 2004). Two options exist for applying the MSY search: stationary and compensatory (Walters *et al.*, 2005). The stationary analysis is analogous to a singlespecies MSY estimate, which fixes the parameters of all other groups at their Ecopath inputs so that they cannot respond to changes in the target group. In the non-stationary (compensatory) option, other groups (both predators and prey) can respond to changes in biomass of the target group. We compared the values derived from Ecosim with those estimated from stock assessments where possible. For Gulf menhaden, since  $F_{MSY}$  was not estimable in the stock assessment model, we used the value of 4.5, which was the upper bound of the search algorithm (SEDAR 63 2018). For diagnostic purposes only, in some cases we assume  $F_{MSY} = M$  for this analysis.

## Ecosim network analysis

We used the Ecosim network analysis to compute the changes in biomass and catches between the start (1980) and the end (2016) of our modeling period. In addition, we used this module to compute the Shannon index of diversity and mean trophic level of the catch.

## Results

## Ecopath

## Pre-balance diagnostics and tuning

Model balance diagnostics ensured biologically realistic trends across functional groups in terms of energy production and transfer. The biomass of functional groups spanned four orders of magnitude in scale, and generally, biomass declined across trophic levels (estimate = 3.47, slope = -1.56; Link, 2010; Heymans et al., 2016; Figure 3; Table 18). Production (P), consumption (Q), respiration (R), and vital rates all tended to increase (linearly) with decreasing TL as expected, with  $R^2$  estimates ranging from 0.31 (R/B) to 0.64 (P) or 0.45 (R/B) to 0.68 (P) when excluding juvenile groups (Figure 4). Biomass estimates for multi-stanza groups (e.g., juveniles) diverged from the regression line for most model estimates, for example the juvenile (0-1 yr) age classes of king mackerel (group #21) and Spanish mackerel (group #23), and juvenile (0-3 yr) yellowedge grouper (group #30) all fall below the regression line, indicating that the biomass of these groups are low compared to the biomass expected given their trophic levels. This could occur because of over-estimation of TLs or underestimation of their biomasses. The overestimation of the *TL*s for juvenile mackerels may be due to the sparse diet data, which prevented the use of the probabilistic approach. Their initial diet composition was based on a weighted average and was modified as needed during model balancing. For yellowedge grouper, no diet data were available and therefore the juvenile diet composition was borrowed from adults. Overestimation of their biomasses might be due to the high uncertainty in recruitment variations and post-larval mortality rates of these groups. All predator-prey ratios fell below one as expected with the exception of Q/B and R/B for marine mammals and birds relative to small pelagics (Table 19). This might be due to mis-parameterization of catch, production, respiration, or over-estimation of predation pressure on prey (Link, 2010). The majority of functional groups displayed P/Q ratios between 0.10 and 0.30, with the exception of a few multistanza groups, marine mammal groups, seabirds, and sea turtles, which had P/Q ratios at or below 0.10 (Table 18).

The following estimates remained below 1 for all groups, appropriately: biomass relative to primary producers (range: 0 - 0.09), production relative to primary producers (range: 0 - 0.053), *P/B* or *Z* relative to primary producers (range: 0.001 - 0.141), and the ratio of the predation losses of each functional group to its production (i.e., production is higher than consumption by predators; range: 0.006 - 0.98; Table 20). In addition, estimates remained below 1 for the ratio of total fishing removals to production or *F/Z* (range: 0 - 0.9) and the ratio of total fishing removals to consumption (range: 0 - 0.112; Table 21). The following estimates remained above 1 for all groups, appropriately: the

ratio of the consumption by each functional group to its production (i.e., inverse of P/C, or where production is smaller than consumption by functional group; range: 3.68 - 132; Table 20). Combined, these diagnostics demonstrated that the data inputs are compatible with model predictions and that the US Gulf-wide EwE model does not violate critical assumptions about mass balance, bioenergetics, and vital rates for the modeled groups (Link, 2010).

The most frequent error encountered during model balancing was predation mortality exceeding the biomass production rate of a prey group. This result primarily occurred for prey taxa with highly abundant predator(s) or those with high consumption rates. The most common modification during model balancing was the reduction of these predation events via modifications to the diet matrix, under the assumption that starting values of diet inputs have high uncertainty and may not be representative of system-wide or group-wide predation rates. On average, the diet composition was modified by about 7 to 10 percent, with the largest changes made to juvenile king and Spanish mackerel (anchovy prey composition reduced by 20%) and skates/rays (detritus prey composition increased by 23%). Notably, very little data (N = 3 studies) were available to parameterize the diets of juvenile mackerels. For skates/rays, predation on select prey items (i.e., fishes) was reduced and assigned to detritus under the assumption that these predation events were likely due to scavenging. Observed landings were fixed during model balancing, such that in situations where fishing mortality exceeded stock production, either the functional group's biomass or P/B value was increased. This was necessary for many high TL predators, which exhibited low biomass but high landings (e.g., tunas), possibly a result of limited biomass estimates for the GoM (i.e., not representative of GoM trends) or violations of the assumptions required for estimating biomass from catch and *F* (e.g., migration effects).

The balanced US Gulf-wide Ecopath model captures the trophic dynamics in biomass, consumption, mortality, and diet for 78 functional groups ranging from phytoplankton to a variety of apex predators in the GoM (Table 18). A food web diagram (Figure 5) of the mass-balanced Ecopath component demonstrates the complexity and interconnectedness of populations in this ecosystem, highlighting ecosystem interactions with the Gulf menhaden (2+ yr) group.

## **Ecotrophic efficiency**

Ecotrophic efficiency (*EE*) is a measure of the proportion of a group's production that is accounted for in the model by predation and harvest. Through mass balance adjustments, *EE* estimates were below 1 for all functional groups except a few groups that exhibited very low *EE*s, indicative of low predation and fishing mortality relative to biomass production and therefore a high proportion of unexplained mortality (e.g.,

minimal accounting of production fate; Table 18). These groups included primary producers, baleen whales, and age-0 menhaden that have high biomass and/or few predators. The Gulf menhaden group is characterized by relatively low *EE* in our model (*EE*: 0.03-0.456 for the different age-stanzas), which suggests that a majority of production is unaccounted for and feeds into detritus. This result was also obtained in previous models in the GoM (Sagarese *et al.*, 2016). Possible reasons for the low *EE* are: (1) limited abundance of predators compared to a large menhaden biomass; (2) neglect of other sources of mortality, including environmental conditions such as dead-zones or diseases; (3) under-representation of menhaden consumption in the diet matrix, which may stem from inadequate sampling of species that eat menhaden (or robustness of the diet data in general), rapid degradation of menhaden in predator stomachs, or the coarse taxonomic resolution of prey items in diet studies (Sagarese *et al.*, 2016); and (4) potentially an overestimate of biomass and total mortality rate inherited from the stock assessment.

Other groups, such as juvenile Red snapper (1-2 yr) and white shrimp are also characterized by low *EEs* in our model (*EE*: 0.17 and 0.18, respectively; Table 18). Data on predation of juvenile fishes can be limiting because the feeding events are usually isolated in time/space and not captured in diet studies and rapid digestion of juvenile fishes prohibits species level identification in stomach contents. For some high trophic groups such as Baleen whales (*TL* = 3.467) and Large oceanic sharks (*TL* = 3.61), low *EEs* (0.067 and 0.275, respectively) are expected due to the fact that their removal is more related to senescence, diseases, and migration rather than fishing and predation.

### **Mortality rates**

The largest fishing mortalities were noted for brown shrimp ( $F = 2.15 \text{ yr}^{-1}$ ), juvenile (0-1 yr) Spanish mackerel ( $F = 1.37 \text{ yr}^{-1}$ ), and yellowfin tuna ( $F = 0.8 \text{ yr}^{-1}$ ; Table 21). Functional groups that were primarily driven by fishing mortality (i.e., higher F/Z ratio) included swordfish (F/Z = 0.90), billfish (F/Z = 0.84), and adult red snapper (F/Z = 0.77; Table 21). Other functional groups with relatively high F/Z ratios (i.e., > 0.5) included adult red grouper, yellowfin tuna, juvenile Spanish mackerel, adult gag grouper, Atlantic sharpnose shark, goliath grouper, sea trout, other tunas, and shallow-water groupers (Table 21). The majority of functional groups had M/Z ratios above 0.5; Table 21). Functional groups for which mortality was solely based on natural mortality through either predation or other mortality sources included marine mammals, seabirds, sea turtles, planktivores, anchovies-silversides-killifish, cephalopods, zooplankton, infauna and primary producers (Table 21).

Predation mortality was highest for lower trophic level groups including phytoplankton ( $M2 = 48 \text{ yr}^{-1}$ ), zooplankton ( $M2 = 7.2 \text{ yr}^{-1}$ ), and infauna ( $M2 = 2.5 \text{ yr}^{-1}$ ; Table 21).

Predation mortality was lowest for baleen whales ( $M2 = 0.011 \text{ yr}^{-1}$ ), which were consumed solely by large oceanic sharks (Table 8); adult red snapper ( $M2 = 0.024 \text{ yr}^{-1}$ ) (Table 21), which were consumed by a wide variety of sharks and teleosts; and adult yellowedge grouper ( $M2 = 0.0265 \text{ yr}^{-1}$ ), which were consumed by sharks and larger teleosts (Table 8). The fish groups with the highest predation mortality included anchovy-silverside-killifish (M2 = 1.34), reef omnivores (M2 = 1.32), surface pelagics (M2 = 1.32), butterfish (M2 = 1.31), and benthic coastal invertebrate feeders (M2 = 1.20). Other sources of mortality were highest for primary producers including phytoplankton ( $M0 = 111.9 \text{ yr}^{-1}$ ), algae ( $M0 = 25.5 \text{ yr}^{-1}$ ), and seagrass ( $M0 = 24.8 \text{ yr}^{-1}$ ), and lowest for swordfish ( $M0 = 0.007 \text{ yr}^{-1}$ ), oceanic piscivores ( $M0 = 0.009 \text{ yr}^{-1}$ ), and adult (3+ yr) red grouper ( $M0 = 0.0097 \text{ yr}^{-1}$ ; Table 21).

Gulf menhaden represent key forage and supported 32 predator groups in the US Gulfwide EwE model (Figure 5). The main predators of age-0 Gulf menhaden included: red drum ( $M2 = 0.016 \text{ yr}^{-1}$ ), sea trout ( $M2 = 0.015 \text{ yr}^{-1}$ ), and seabirds ( $M2 = 0.011 \text{ yr}^{-1}$ ). Sea trout and red drum remained key predators for older Gulf menhaden (ages 1+), in addition to juvenile king and Spanish mackerels (Figure 6). Predation mortality by juvenile king mackerel increased with age for Gulf menhaden (age-2,  $M2 = 0.019 \text{ yr}^{-1}$ ; age-3,  $M2 = 0.052 \text{ yr}^{-1}$ ; and age-4+;  $M2 = 0.229 \text{ yr}^{-1}$ ). Additional top predators of Gulf menhaden included blacktip shark (e.g., Gulf menhaden age-4+;  $M2=0.019 \text{ yr}^{-1}$ ), adult gag grouper (e.g., Gulf menhaden age-3;  $M2 = 0.002 \text{ yr}^{-1}$ ), coastal piscivores (e.g., Gulf menhaden age-3;  $M2 = 0.013 \text{ yr}^{-1}$ ), and coastal dolphins (e.g., Gulf menhaden age-2; M2 = 0.009). Other predators which exhibited lower rates of predation on Gulf menhaden are shown on the x-axis in Figure 6.

### System summary statistics

The US Gulf-wide Ecopath model displayed one of the highest indices of connectance and system omnivory among GoM models examined (Table 22), although estimates were lower than the nGoM model developed for the time period 2005-2009 (Sagarese *et al.*, 2017). This result is likely attributable to the greater number of multi-stanza groups in the 1980 model, which split out key fisheries species into age classes (e.g., menhaden) or species (e.g., shrimp). In addition, some predator-prey interactions were re-evaluated and modified following input from stakeholders.

Among regional models, the US Gulf-wide Ecopath model produced higher estimates of respiration, exports, total system throughput, and production, but lower estimates of consumption and catch (Table 22). Total system throughput and production were also higher than other LMEs, yet lower than the upwelling system in Peru (Tam *et al.*, 2008, Table 22). The US Gulf-wide EwE model showed high throughput (18,917 t km<sup>-2</sup> yr<sup>-1</sup>) out of which 8,936 and 9,980 t km<sup>-2</sup> yr<sup>-1</sup> are sourced from detritus and primary

productivity, respectively. The relatively high ratio between detritus and primary productivity throughput is characteristic of a shallow-water detritus-driven GoM system, which is similar to the Gulf of California ecosystem (Arreguin-Sánchez et al., 2002), and is in contrast to upwelling systems, such as Peru, that are dominated by primary productivity (Tam et al., 2008; Table 22). Similarly, as expected for a highly fished, shallow, warm-water, productive, and detritus-driven system, the mean trophic level of the catch was low (TL = 2.34) due to the large portion of forage fish (Gulf menhaden), shrimp, and crab in the catch, but was reduced from the 2005 to 2009 nGoM Ecopath model estimate (TL = 2.8). This result may be attributed to the increased landings of Gulf menhaden in the 1980s as well as better characterization or increased representation of dead discards within the model, which often include lower trophic level groups. A noteworthy difference between the 2005-2009 nGoM Ecopath model and the US Gulf-wide Ecopath model is in the transfer efficiency, with 20.41% and 7.9%, respectively (Table 22). This difference is likely attributed to alternative model structure compared to the 2005 model (e.g., greater resolution of lower trophic level groups including menhaden and shrimp), and input values that lead to lower EE, which in turn result in lower transfer efficiency.

## **Trophic Levels**

Group-level TL analysis (Table 18) indicated that yellowfin tuna exhibited the highest estimated TL (3.85) followed by offshore dolphins (3.79) and dusky shark (3.75; Table 18), which fed upon a range of teleost and invertebrate previtems (Table 8). Estimated TLs for other sharks ranged from 3.64 for sandbar shark and large coastal sharks to 3.39 for the smaller coastal Atlantic sharpnose shark. Other predatory groups include swordfish (TL = 3.75), goliath grouper (TL = 3.59), greater amberjack (TL = 3.57), and Spanish mackerel (TL = 3.54). Mid trophic level finfish groups, which feed largely on invertebrates, included red snapper (TL = 3.32-3.42), mutton snapper (TL = 3.24) and tilefish (TL = 3.27). The main forage fish in the GoM ecosystem is the Gulf menhaden (TL = 2.25), which accounts for ~85% of forage fish biomass, although it is important to note the high uncertainty in estimating total biomass for the other forage fish groups due to the lack of stock assessments. The different age classes of the Gulf menhaden support a total of 32 predator groups (Figure 5) and are particularly important in the diets of coastal predators such as red drum and sea trout and more pelagic species such as king and Spanish mackerels (Figure 6). Other forage groups consisting of teleosts in the model include the sardine-herring-scad complex (TL = 2.77), the anchovy-silverside-killifish (TL = 2.62) complex, and mullet (TL = 2.41). These forage groups collectively support a large spectrum of predators, some of which are not supported by Gulf menhaden, likely due to different habitat preferences and lack of spatial overlap (e.g., yellowedge grouper, goliath grouper, red snapper, vermilion snapper, and mutton snapper).

The commercial pelagic longline, commercial shark longline and recreational charter fleets yielded the catches with the highest *TL*s (*TL* of catch = 3.79, 3.42, and 3.37, respectively; Table 15). In contrast, the lowest *TL*s of the catch occurred for the commercial dredge/dig fleet (*TL* of catch = 2.01), the commercial bottom trawl fleet targetting species other than shrimp (*TL* of catch = 2.07), and the commercial purse seine menhaden fleet (*TL* of catch = 2.26; Table 15). The remaining fishing fleets generally caught fish with *TL*s ranging from 3.3 to 2.3 on average (Table 15).

## **Network analysis**

The overall trophic flows among functional groups and *TL*s show that most of the flows from detritus and primary producers occur within discrete trophic levels 1-3 (>99.2%), i.e., largely through primary producers, primary consumers, and secondary consumers. Transfer efficiency was 7.835% from primary producers, 8.105% from detritus, and 7.9% in total, with 47% of total flow originating from detritus, which is expected in a detritus-driven system such as the GoM. Gulf menhaden accounted for 8.3% of the total flows from discrete trophic levels 2 to 3 and for 93% out of all fish-related groups (Table 23), demonstrating the important role of menhaden in the GoM ecosystem. The model exhibited a relative ascendancy value of 37.4%, indicating an organized system compared to other systems (Table 22), but less organized compared to the upwelling system of Peru (relative ascendancy = 46.2%; Tam *et al.*, 2008, Table 22; Ulanowicz and Norden, 1990).

The main functional groups with the highest flows included the primary producers: algae, seagrass, phytoplankton, and detritus (819.5, 3750, 4000, and 8152 t km<sup>-2</sup> yr<sup>-1</sup> respectively), followed by sessile epifauna, mobile epifauna, zooplankton, and infauna (108.01, 288, 1110.3, and 407 t km<sup>-2</sup> yr<sup>-1</sup>, respectively). Out of the harvested groups, age-0, age-1, and age-2 Gulf menhaden had the highest flows of 81.2, 96.7, and 30.9 t km<sup>-2</sup> yr<sup>-1</sup>, respectively. Main flows from primary producers and detritus to secondary producers include zooplankton, infauna, and mobile epifauna at 1061, 390, and 253.7 t km<sup>-2</sup> yr<sup>-1</sup>, respectively. Transfer efficiencies were 7.9% for total flow, and 7.8% and 8.1% from primary producers and detritus, respectively. These values are relatively low compared to other systems, potentially due to a high proportion of unexplained mortality in the current model. The limited availability of absolute biomass estimates for lower trophic levels may have led to an under-representation of their biomasses in the modeled system. Alternative Ecopath configurations, which estimate biomass based on input *EEs*, could be explored to identify alternative biomass estimates for these uncertain groups.

## Ecosim

## Ecosim base run configuration

The base configuration was achieved after finalization of the reference time series and refinement of the Ecopath parameters, the vulnerabilities matrix, and the estimated primary production (PP) anomaly time series. The Ecosim tuning and calibration process represents a tradeoff between reducing the SSE and achieving realistic model performance and parameterization. The overall SSE was reduced from 12,572 at the start and before applying the automatic fitting routine to 4,582 after applying the automated fitting routine. Given the differences in time series and weightings applied to each, the SSE values are not comparable among the different models. The final vulnerability matrix and estimated PP anomaly are given in Table S3.1 and Figure S3.1, respectively.

## **Ecosim fits**

Ecosim predictions largely correspond to observed trends in historical biomass (Figure 7) and catch (Figure 8), especially for those economically important groups for which data were obtained from SEDAR stock assessments (e.g., greater amberjack, Spanish mackerel, and yellowedge grouper). In contrast, modeled trends did not always fit the biomass and catch data for groups such as sharks (Figures 7-8) and HMS species (e.g., yellowfin tuna; Figures 7-8). Time series estimates for these groups were considered uncertain given concerns with the representativeness of the data for the GoM region and their movement (i.e., migration). Therefore, the weights applied to time series for these groups during model fitting were relatively low to capture the large uncertainty (Table 16). Moreover, in cases where fishing mortality time series were not available, fishing pressure was forced based on fishing effort, which is not group-specific and was characterized by rough trends in the number of vessels or gears fished over time, and therefore does not always correspond to the actual fishing mortality exerted on a given species.

The Ecosim optimization routine, which attempts to reduce the overall SSE, focuses on groups with higher weights (i.e., lower CV) which, in turn, artificially increase the group's SSE. For example, the model predicts the catch of adult (3+ yr) yellowedge grouper almost perfectly (Figure 8), but the associated SSE is relatively high (24.13) due to the high weight assigned to this group's catch (27.14). Similarly, adult (3+ yr) red snapper, tilefish, Gulf menhaden (all age classes), and brown shrimp, also exhibit good fits with high SSEs. In some cases, the trend was generally correct, but the model missed the high frequency fluctuations (e.g., biomass of billfish, bluefin tuna, and swordfish). This is reasonable for HMS, since large-scale oceanic migrations are not well captured by the

closed EwE model. For other groups, such as the white, pink, and brown shrimps, the model did not adequately capture the relatively high biomass of GoM shrimp from 2007 to 2013, which was evident in the reference time series. Similarly, the model missed a sharp decline in red grouper and gag grouper biomass during 2005, which was attributed to red tide mortality (SEDAR 61, 2019; SEDAR 33 Update, 2016), a process that is not currently included as a forcing function in this model. Additional discrepancies between observed data and predicted data are possibly associated with environmental drivers that represent areas of future research, including water temperature effects, ocean circulation, or other nutrient sources, such as upwelling.

Conversely, model predictions were relatively poor for the group biomasses of some young age-stanzas, including juvenile (0-3 yr) yellowedge grouper, red grouper, and gag grouper, possibly due to the lack of interannual recruitment deviation estimates in Ecosim. Groups such as shallow-water grouper exhibited poor fits to biomass inputs, which could indicate that the relative index of abundance used for a single species was not representative of the aggregate group. Note that for groups for which fishing mortality time series were not available (i.e., deep water groupers and shallow water groupers), catch time series were defined as forcing, and therefore there are no SSE.

### Ecosim F<sub>MSY</sub> estimation

The evaluation of  $F_{MSY}$  estimates from Ecosim showed relative agreement with those derived from single-species stock assessments (Figures 9-10, Table 24). A slight bias towards higher  $F_{MSY}$  estimates in EwE compared to the assessment estimates (Figure 10) was observed, likely due to differences in age structure and selectivity, in addition to the foraging parameters. For several groups, prey vulnerabilities were adjusted to increase the correspondence between the EwE-derived and the assessment  $F_{MSY}$ .

### Ecosim results summary

A comparison between ecosystem snapshots at the start (1980) and the end of the modeled time period (2016), resulted in an approximate 60% increase in biomass (excluding detritus) and 30% increase in fishery catches. Groups with higher biomass estimates in the recent period include yellowfin tuna, swordfish, adult (3+ yr) red snapper, and adult Gulf menhaden (2+ yr). In contrast, groups with lower catches and biomass in the recent period include large oceanic sharks, other tunas, adult (1+ yr) Spanish mackerel, adult (1+ yr) king mackerel, and reef piscivores (Table 25). Overall, the US Gulf-wide EwE model results indicated a general trend of rebuilding stocks over the past 25 years (1992-2016). These findings are in agreement with those reported in the GoM ecosystem status report (Karnauskas *et al.* 2017). The GoM ecosystem status report as well as the US Gulf-wide EwE model highlight a recovery of multiple groups,

such as Spanish mackerel, king mackerel, and red snapper, in contrast to other groups for which stocks were declining in the recent period, e.g., Atlantic sharpnose shark.

Interestingly, the primary production anomaly time series increased ~30% in the simulation time period (Figure S3.1), with higher trophic levels characterized by higher proportional increases (Table 25). This result may be explained by complex interactions and various feedback processes that can result in non-linear amplifications or reductions (Levin, 1998). A classic example for such an effect is the non-linear change that the presence of keystone species such as sea otters caused on the littoral and sublittoral species abundance and composition in the western Aleutian Islands (Estes and Palmisano, 1974). Similarly, fluctuations in primary productivity can propagate up the food web resulting in complex dynamics in higher trophic levels in the ecosystem (Kearney *et al.*, 2013).

Lastly, species diversity and mean trophic level of the catch did not show a large change over the modeled time period, as predicted by the US Gulf-wide EwE model (Figure 11). The model predicted a slightly increasing *TL* of the catch since 1990, potentially a result of lower menhaden harvest. The Shannon's diversity index revealed a slow decline through the mid-1990s, and has shown a slight increase thereafter (Figure 11). These finding are generally in line with the trends published in the GoM ecosystem status report, which were largely based on the same input data (Karnauskas *et al.* 2017).

# Conclusions

The development and calibration of the US Gulf-wide EwE model presented in this report represents a substantial first step in supporting EBFM in the GoM and provides a useful tool to complement single-species stock assessment and fishery management decisions. The model represents a state-of-the-art EwE model in taxonomic resolution that spans key ecologically and economically important species and incorporates diverse datasets of reference time series used for model calibration, as well as integration of fleet bycatch across fisheries. Both the Ecopath and Ecosim components of this model are based on current best practices and available data at the time of model development. Overall, the predicted trends in biomass and catch match associated time series inputs and EwE predictions of fishing mortality reference points match those estimated as part of the SEDAR process (e.g.,  $F_{MSY}$  from stock assessments). As presented, this model could be applied for a number of different species and research questions pending small modifications and peer review (Table 26). Extensive modifications such as disaggregating marine mammal and sea turtle groups and data additions such as time series of biomass for marine mammals or sea turtles could increase utility of this model for addressing protected resource issues

(Table 26). This work identifies clear data gaps and uncertainties associated with the various data inputs, which is expanded upon below. Nevertheless, this work represents a key advancement in developing a tool that can be used to provide analytical support for Ecosystem-based Fisheries Management (EBFM) in the GoM.

# **Future work**

The US Gulf-wide EwE model presented in this study will need to be updated with newly acquired input data representing the best scientific information available. In addition to keeping the model up-to-date, such data may reflect previously unobserved dynamics in the ecosystem and so such updates are important in ensuring the model is an accurate representation of the functioning of the true ecosystem. Occasional model updates will therefore be necessary in the future such as:

- Incorporating diet data as they become available, particularly for juvenile fishes and higher trophic level predators (see Table S1.1 in Appendix 1), for which comprehensive GoM-specific data are lacking.
- Gain a better understanding of predation on age-0, juvenile, and adult Gulf menhaden through traditional diet studies or DNA barcoding approaches.
- Updating recreational landings to reflect the newest and best available estimates based on the MRIP Fishing Effort Survey. Incorporation of this dataset would also improve characterization of recreational data in 1981 due to improved QAQC and species identification issues.
- Updating reference time series for recently conducted stock assessments and extending Ecosim simulations through 2020.
- Incorporating the effect of additional environmental drivers including water temperature effects, ocean circulation, or other nutrient sources, such as upwelling.

Ongoing work with the US Gulf-wide EwE model includes addressing the following research questions:

- Examination of the possible effect of optional Gulf menhaden harvest strategies on the GoM ecosystem.
- Development of ecological indicators related to the Gulf menhaden fishery.
- Development of the spatial component of EwE (Ecospace) for our model domain, with the objective of capturing spatially explicit dynamics in the GoM ecosystem as separated into different management zones (e.g., east vs. west).

Other potential uses of the US Gulf-wide EwE model pending data additions, model improvements and technical review include:

- Evaluation of Gulf-wide bycatch reduction programs on fisheries and protected resources
- Marine spatial planning
- Climate vulnerability analysis
- Evaluating the importance of habitat on fisheries productivity
- Operating model of ecosystem dynamics for simulation-based studies or management strategy evaluation

## **Literature Cited**

- Ahrens, R.N.M., Walters, C.J., and Christensen, V. 2012. Foraging arena theory. Fish Fish. 13:41–59
- Ainsworth, C., Heymans, J.J.S., Pitcher, T., and Vasconcellos, M. 2002. Ecosystem models of Northern British Columbia for the time periods 2000, 1950, 1900 and 1750. Fish. Centre, Univ. Br. Columbia, Vancouver 10:41
- Ainsworth, C.H., Kaplan, I.C., Levin, P.S., and Mangel, M. 2010. A statistical approach for estimating fish diet compositions from multiple data sources: Gulf of California case study. Ecol. Appl. 20:2188–2202
- Ainsworth, C.H., Paris, C.B., Perlin, N., Dornberger, L.N., Patterson, W.F., Chancellor, E., Murawski, S., Hollander, D., Daly, K., Romero, I.C., Coleman, F., and Perryman, H. 2018. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS One (J. P. Meador, ed.) 13:e0190840. https://doi.org/10.1371/journal.pone.0190840.
- Ainsworth, C.H., Schirripa, M.J., and Morzaria-Luna, H.N. 2015. An Atlantis ecosystem model for the Gulf of Mexico supporting integrated ecosystem assessment. NOAA Tech. Memo. NMFS-SEFSC-676 149
- Alava, J.J., Cisneros-Montemayor, A.M., Sumaila, U.R., and Cheung, W.W.L. 2018. Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific. Sci. Rep. 8:13460
- Arreguin-Sánchez, F., Arcos, E., and Chávez, E.A. 2002. Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California, Mexico. Ecol. Modell. 156:167–183
- Berenshtein, I., Paris, C., Perlin, N., Alloy, M., Joye, S., and Murawski, S. 2020. Invisible oil beyond the Deepwater Horizon satellite footprint. Sci. Adv. 6:8863
- Chagaris, D., Drew, K., Schueller, A., Cieri, M., Brito, J., and Buchheister, A. 2020a. Ecological reference points for Atlantic menhaden established using an ecosystem model of intermediate complexity. Front. Mar. Sci. 7:1043

- Chagaris, D.D., Mahmoudi, B., Walters, C.J., and Allen, M.S. 2015. Simulating the trophic impacts of fishery policy options on the West Florida Shelf using Ecopath with Ecosim. Mar. Coast. Fish. 7:44–58
- Chagaris, D.D., Patterson III, W.F., and Allen, M.S. 2020b. Relative effects of multiple stressors on reef food webs in the Northern Gulf of Mexico revealed via ecosystem modeling. Front. Mar. Sci. doi: 10.3389/fmars.2020.00513
- Chagaris, D., Sagarese, S., Farmer, N., Mahmoudi, B., de Mutsert, K., VanderKooy, S., Patterson III, W.F., Kilgour, M., Schueller, A., and Ahrens, R. 2019. Management challenges are opportunities for fisheries ecosystem models in the Gulf of Mexico. Mar. Policy 101:1–7
- Christensen, V., and Walters, C.J. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Modell. 172:109–139
- Christensen, V., Walters, C.J., and Pauly, D. 2000. Ecopath with Ecosim: a user's guide. Univ. Br. Columbia, Fish. Centre, Vancouver, Canada ICLARM, Penang, Malaysia 131
- Christensen, V., Walters, C.J., and Pauly, D. 2005. Ecopath with Ecosim: a user's guide. Fish. Centre, Univ. Br. Columbia, Vancouver 154
- Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and Walters, C.J. 2014. Representing variable habitat quality in a spatial food web model. Ecosystems 17(8):1397–1412
- Colléter, M., Valls, A., Guitton, J., Gascuel, D., Pauly, D., and Christensen, V. 2015. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Modell. 302:42–53
- Corrales, X., Coll, M., Ofir, E., Heymans, J.J., Steenbeek, J., Goren, M., Edelist, D., and Gal, G. 2018. Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming. Sci. Rep. 8:14284
- Cowan, J.H., Grimes, C.B., Patterson, W.F., Walters, C.J., Jones, A.C., Lindberg, W.J., Sheehy, D.J., Pine, W.E., Powers, J.E., and Campbell, M.D. 2011. Red snapper management in the Gulf of Mexico: science-or faith-based? Rev. Fish Biol. Fish. 21:187–204
- Darwall, W.R.T., Allison, E.H., Turner, G.F., and Irvine, K. 2010. Lake of flies, or lake of fish? A trophic model of Lake Malawi. Ecol. Modell. 221:713–727
- de Mutsert, K., Steenbeek, J., Lewis, K., Buszowski, J., Cowan Jr, J.H., and Christensen, V. 2016. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol. Modell. 331:142–150

- de Silva, J.A., and Condrey, R. 1997. Bycatch in the US Gulf of Mexico menhaden fishery: Results of onboard sampling conducted in the 1994 and 1995 fishing seasons. Coastal Fisheries Institute, Louisiana State University.
- de Silva, J.A., Condrey, R.E. and Thompson, B.A. 2001. Profile of shark bycatch in the US Gulf of Mexico menhaden fishery. N. Am. J. Fish. Manag. 21(1):111–124.
- Diamond, S.L., Kleisner, K.M., Duursma, D.E., and Wang, Y. 2010. Designing marine reserves to reduce bycatch of mobile species: a case study using juvenile red snapper (Lutjanus campechanus). Can. J. Fish. Aquat. Sci. 67:1335–1349
- DiLeone, A.M.G., and Ainsworth, C.H. 2019. Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf. Ecol. Modell. 392:250–267
- Estes, J.A., and Palmisano, J.F. 1974. Sea otters: their role in structuring nearshore communities. Science (80). 185:1058–1060
- Fitzpatrick, E.E., Williams, E.H., Shertzer, K.W., Siegfried, K.I., Craig, J.K., Cheshire, R.T., Kellison, G.T., Fitzpatrick, K.E., and Brennan, K. 2017. The NMFS Southeast Region Headboat Survey: History, Methodology, and Data Integrity. Mar. Fish. Rev. 79:1–28
- FWC (Florida Fish and Wildlife Conservation Commission). 2016. The 2016 stock assessment of spotted seatrout, Cynoscion nebulosus, in Florida. FWC. 307 pp. Available from: <u>https://myfwc.com/research/saltwater/stock-assessments/finfish/</u>
- Geers, T.M., Pikitch, E.K., and Frisk, M.G. 2016. An original model of the northern Gulf of Mexico using Ecopath with Ecosim and its implications for the effects of fishing on ecosystem structure and maturity. Deep Sea Res. Part II Top. Stud. Oceanogr. 129:319–331
- Gray, A.M. 2014. Karenia Brevis Harmful Algal Blooms: Their Role in Structuring the Organismal Community on the West Florida Shelf. M.S. Thesis. University of South Florida, St. Petersburg, Florida.
- Grüss, A., Harford, W.J., Schirripa, M.J., Velez, L., Sagarese, S.R., Shin, Y.J., and Verley, P. 2016. Management strategy evaluation using the individual-based, multispecies modeling approach OSMOSE. Ecol. Modell. 340:86–105
- Grüss, A., Perryman, H.A., Babcock, E.A., Sagarese, S.R., Thorson, J.T., Ainsworth, C.H., Anderson, E.J., Brennan, K., Campbell, M.D., and Christman, M.C. 2018.
  Monitoring programs of the US Gulf of Mexico: inventory, development and use of a large monitoring database to map fish and invertebrate spatial distributions. Rev. Fish Biol. Fish. 28:667–691
- Grüss, A., Rose, K.A., Simons, J., Ainsworth, C.H., Babcock, E.A., Chagaris, D.D., De Mutsert, K., Froeschke, J., Himchak, P., and Kaplan, I.C. 2017. Recommendations

on the use of ecosystem modeling for informing ecosystem-based fisheries management and restoration outcomes in the Gulf of Mexico. Mar. Coast. Fish. 9:281–295

- Guillory, V., and Hutton, G. 1982. A survey of bycatch in the Louisiana gulf menhaden fishery. *In* Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agencies. p. 213–223., Vol. 36
- GDAR (Gulf Data Assessment and Review) 01. 2013. GDAR 01 Stock assessment report: Gulf of Mexico Blue Crab. Gulf States Marine Fisheries Commission, Ocean Springs, MS. 313 pp. Available from: <u>https://www.gsmfc.org/pubs.php?s=GDAR</u>
- Hart, R.A. 2018. Stock Assessment Update for Pink Shrimp (*Farfantepenaeus duorarum*) in the U.S. Gulf of Mexico for the 2017 Fishing Year. Southeast Fisheries Science Center. Galveston, TX. 17 pp.
- Hart, R.A. 2018. Stock Assessment Update for Brown Shrimp (*Farfantepenaeus aztecus*) in the U.S. Gulf of Mexico for the 2017 Fishing Year. Southeast Fisheries Science Center. Galveston, TX. 19 pp.
- Hart, R.A. 2018. Stock Assessment Update for White Shrimp (*Litopenaeus setiferus*) in the U.S. Gulf of Mexico for the 2017 Fishing Year. Southeast Fisheries Science Center. Galveston, TX. 20 pp.
- Heymans, J.J., Coll, M., Link, J.S., Mackinson, S., Steenbeek, J., Walters, C. and Christensen, V. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Modell. 331:173–184
- Hoenig, J.M., 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82(1):898–903
- Howe, S., Miranda, C., Hayes, C.T., Letscher, R.T., and Knapp, A.N. 2020. The dual isotopic composition of nitrate in the Gulf of Mexico and Florida Straits. J. Geophys. Res. Ocean. 125:e2020JC016047
- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2015. Report of the 2015 ICCAT Bigeye Tuna Stock Assessment Session. ICCAT, Madrid, Spain. 61 pp. Available from: https://www.iccat.int/en/Meetings.asp#
- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2016. Report of the 2016 ICCAT Yellowfin Tuna Assessment Meeting. ICCAT, Madrid, Spain. 103 pp. Available from: <u>https://www.iccat.int/en/Meetings.asp#</u>
- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2017a. Report of the 2017 ICCAT Shortfin Mako Assessment Meeting. ICCAT, Madrid, Spain. 64 pp. Available from: <u>https://www.iccat.int/en/Meetings.asp#</u>
- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2017b.

Report of the 2017 ICCAT Atlantic Swordfish Stock Assessment Session. SCRS/2017/008, Collect. Vol. Sci. Pap. ICCAT, 74(3): 841-967 (2017)

- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2017c. Report of the 2017 ICCAT Bluefin Stock Assessment Meeting. SCRS/2017/010. Collect. Vol. Sci. Pap. ICCAT, 74(6): 2372-2535(2018)
- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2018. Report of the 2018 ICCAT Blue Marlin Stock Assessment Meeting SCRS/2018/008, Collect. Vol. Sci. Pap. ICCAT, 75(5): 813-888 (2018)
- ICCAT (International Commission for the Conservation of Atlantic Tunas). 2019a. Report Of The 2019 ICCAT Yellowfin Tuna Stock Assessment Meeting. SCRS/2019/011, Collect. Vol. Sci. Pap. ICCAT, 76(6): 344-515 (2020)
- Innes, S., Lavigne, D.M., Earle, W.M., and Kovacs, K.M. 1987. Feeding rates of seals and whales. J. Anim. Ecol. 115–130
- Karnauskas, M., Allee, R.J., Craig, J.K., Jepson, M., Kelble, C.R., Kilgour, M., Methot, R.D., and Regan, S.D. 2019. Effective science-based fishery management is good for Gulf of Mexico's "Bottom Line"–but evolving challenges remain. Fish. Mag. 44:239–242
- Karnauskas, M., Kelble, C.R., Regan, S., Quenée, C., Allee, R., Jepson, M., Freitag, A., Craig, J.K., Carollo, C., and Barbero, L. 2017. Ecosystem status report update for the Gulf of Mexico. NOAA Tech. Memo. NMFS-SEFSC 706:51
- Karnauskas, M., Schirripa, M.J., Kelble, C.R., Cook, G.S., and Craig, J.K. 2013. Ecosystem status report for the Gulf of Mexico. NOAA Tech. Memo. NMFS-SEFSC 653:52
- Kearney, K.A., Stock, C., and Sarmiento, J.L. 2013. Amplification and attenuation of increased primary production in a marine food web. Mar. Ecol. Prog. Ser. 491:1–14
- Levin, S.A. 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436
- Lewis, J.P., Tarnecki, J.H., Garner, S.B., Chagaris, D.D., and Patterson, W.F. 2020. Changes in reef fish community structure following the Deepwater Horizon oil spill. Sci. Rep. 10:1–13
- Link, J.S. 2010. Adding rigor to ecological network models by evaluating a set of prebalance diagnostics: a plea for PREBAL. Ecol. Modell. 221:1580–1591
- Lo, N.C., Jacobson, L.D., and Squire, J.L. 1992. Indices of relative abundance from fish spotter data based on delta-lognornial models. Can. J. Fish. Aquat. Sci. 49:2515–2526

- Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish Biol. 49:627–642
- MSFCMA (Magnuson-Stevens Fishery Conservation and Management Act). 2007. Magnuson-Stevens Fishery Conservation and Management Act. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Available from: <u>https://www.fisheries.noaa.gov/resource/document/magnuson-stevens-fishery-</u> conservation-and-management-act
- Matter, V.M. and Nuttall, M.A. 2020a. Marine Recreational Information Program Metadata for the Atlantic, Gulf of Mexico, and Caribbean regions. SEDAR68-DW-13, SEDAR, North Charleston, SC. 16 pp.
- Matter, V.M. and Nuttall, M.A. 2020b. Texas Parks and Wildlife Department's Marine Sport -Harvest Monitoring Program Metadata. SEDAR70-WP-03, SEDAR, North Charleston, SC. 25 pp.
- Maunder, M.N., and Punt, A.E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70:141–159
- National Marine Fisheries Service 2013. US National Bycatch Report First Edition Update 2. US Dep Commer. Available from: <u>https://www.st.nmfs.noaa.gov/Assets/Observer-Program/bycatch-report-update-</u> <u>2/NBR%20First%20Edition%20Update%202\_Final.pdf</u>
- Nilsson, S.G., and Nilsson, I.N. 1976. Numbers, food consumption, and fish predation by birds in Lake Möckeln, southern Sweden. Ornis Scand. 61–70
- O'Farrell, H., Grüss, A., Sagarese, S.R., Babcock, E.A., and Rose, K.A. 2017. Ecosystem modeling in the Gulf of Mexico: current status and future needs to address ecosystem-based fisheries management and restoration activities. Rev. Fish Biol. Fish. 27:587–614
- Odum, W.E. 1971. Pathways of energy flow in a south Florida estuary. Miami, Florida, USA.
- Odum, W.E., and Heald, E.J. 1975. The detritus-based food web of an. Estuar Res Chem Biol Estuar Syst 1:265
- Okey, T.A., and Mahmoudi, B. 2002. An ecosystem model of the West Florida shelf for use in fisheries management and ecological research: Volume II. Model Construction. Florida Mar. Res. Institute, Florida Fish Wildl. Conserv. Comm. St. Petersbg.
- Okey, T.A., Vargo, G.A., Mackinson, S., Vasconcellos, M., Mahmoudi, B., and Meyer, C.A. 2004. Simulating community effects of sea floor shading by plankton blooms

over the West Florida Shelf. Ecol. Modell. 172:339-359

- Palomares, M.L., and Pauly, D. 1989. A multiple regression model for prediction the food consumption of marine fish populations. Mar. Freshw. Res. 40:259–273
- Palomares, M.L.D., and Pauly, D. 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar. Freshw. Res. 49:447–453
- Pauly, D, Christensen, V., and Sambilay Jr, V. 1990. Some features of fish food consumption estimates used by ecosystem modelers. International Council for the Exploration of the Sea (ICES)
- Pauly, Daniel 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39:175–192
- Perryman, H.A., Tarnecki, J.H., Grüss, A., Babcock, E.A., Sagarese, S.R., Ainsworth, C.H., and DiLeone, A.M.G. 2020. A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts. Ecol. Modell. 416:108890
- Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton and others, P., Doukakis, P., Fluharty, D., and Heneman, B. 2004. Ecosystembased fishery management. American Association for the Advancement of Science.
- Rabalais, N.N., Turner, R.E., and Scavia, D. 2002. Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River: Nutrient policy development for the Mississippi River watershed reflects the accumulated scientific evidence that the increase in nitrogen loading is the primary factor in the w. Bioscience 52:129–142
- Robinson, K.L., Ruzicka, J.J., Hernandez, F.J., Graham, W.M., Decker, M.B., Brodeur, R.D., and Sutor, M. 2015. Evaluating energy flows through jellyfish and gulf menhaden (Brevoortia patronus) and the effects of fishing on the northern Gulf of Mexico ecosystem. ICES J. Mar. Sci. 72:2301–2312
- Sagarese, S.R., Lauretta, M. V, and Walter III, J.F. 2017. Progress towards a nextgeneration fisheries ecosystem model for the northern Gulf of Mexico. Ecol. Modell. 345:75–98
- Sagarese, S.R., Nuttall, M.A., Geers, T.M., Lauretta, M. V, Walter III, J.F., and Serafy, J.E. 2016. Quantifying the trophic importance of Gulf menhaden within the northern Gulf of Mexico ecosystem. Mar. Coast. Fish. 8:23–45
- SEDAR (Southeast Data Assessment and Review) 11. 2006. SEDAR 11 Stock assessment report: Large Coastal Shark Complex, Blacktip, and Sandbar Shark. SEDAR, North Charleston, SC. 387 pp. Available from: <u>http://sedarweb.org/sedar-11</u>

- SEDAR (Southeast Data Assessment and Review) 13. 2007. SEDAR 13 Stock Assessment Report: Small Coastal Shark Complex, Atlantic Sharpnose, Blacknose, Bonnethead, and Finetooth Shark. SEDAR, North Charleston, SC. 395 pp. Available from: <u>http://sedarweb.org/sedar-13</u>
- SEDAR (Southeast Data Assessment and Review) 15A. 2015. SEDAR 15A Update Stock Assessment of Mutton Snapper. SEDAR, North Charleston, SC. 144 pp. Available from: <u>http://sedarweb.org/sedar-15A</u>
- SEDAR (Southeast Data Assessment and Review) 21. 2016. SEDAR 21 Update Stock Assessment for HMS Dusky Shark. SEDAR, North Charleston, SC. 64 pp. Available from: <u>http://sedarweb.org/sedar-21</u>
- SEDAR (Southeast Data Assessment and Review) 22. 2011. SEDAR 22 Stock Assessment Report Gulf of Mexico Yellowedge Grouper. SEDAR, North Charleston, SC. 423 pp. Available from: <u>http://sedarweb.org/sedar-22</u>
- SEDAR (Southeast Data Assessment and Review) 22. 2011. SEDAR 22 Stock Assessment Report Gulf of Mexico Tilefish. SEDAR, North Charleston, SC. 467 pp. Available from: <u>http://sedarweb.org/sedar-22</u>
- SEDAR (Southeast Data Assessment and Review) 28. 2013. SEDAR 28 Stock Assessment Report Gulf of Mexico Cobia. SEDAR, North Charleston, SC. 616 pp. Available from: <u>http://sedarweb.org/sedar-28</u>
- SEDAR (Southeast Data Assessment and Review) 29. 2018. SEDAR 29 Update Stock Assessment Report for HMS Gulf of Mexico Blacktip Shark. SEDAR, North Charleston, SC. 99 pp. Available from: <u>http://sedarweb.org/sedar-29</u>
- SEDAR (Southeast Data Assessment and Review) 33. 2016. SEDAR 33 Update Stock Assessment Report Gulf of Mexico Gag Grouper. SEDAR, North Charleston, SC. 123 pp. Available from: <u>http://sedarweb.org/sedar-33</u>
- SEDAR (Southeast Data Assessment and Review) 33. 2016. SEDAR 33 Update Stock Assessment Report Gulf of Mexico Greater Amberjack. SEDAR, North Charleston, SC. 148 pp. Available from: <u>http://sedarweb.org/sedar-33</u>
- SEDAR (Southeast Data Assessment and Review) 34. 2013. SEDAR 34 Stock Assessment Report for HMS Atlantic Sharpnose Shark. SEDAR, North Charleston, SC. 298 pp. Available from: <u>http://sedarweb.org/sedar-34</u>
- SEDAR (Southeast Data Assessment and Review) 38. 2014. SEDAR 38 Stock Assessment Report for Gulf of Mexico King Mackerel. SEDAR, North Charleston, SC. 465 pp. Available from: <u>http://sedarweb.org/sedar-38</u>
- SEDAR (Southeast Data Assessment and Review) 42. 2015. SEDAR 42 Stock Assessment Report for Gulf of Mexico Red Grouper. SEDAR, North Charleston, SC. 612 pp. Available from: <u>http://sedarweb.org/sedar-42</u>

- SEDAR (Southeast Data Assessment and Review) 43. 2015. SEDAR 43 Stock Assessment Report for Gulf of Mexico Gray Triggerfish. SEDAR, North Charleston, SC. 193 pp. Available from: <u>http://sedarweb.org/sedar-43</u>
- SEDAR (Southeast Data Assessment and Review) 47. 2016. SEDAR 47 Stock Assessment Report for Southeastern U.S. Goliath Grouper. SEDAR, North Charleston, SC. 206 pp. Available from: <u>http://sedarweb.org/sedar-47</u>
- SEDAR (Southeast Data Assessment and Review) 51. 2018. SEDAR 51 Stock Assessment Report for Gulf of Mexico Gray Snapper. SEDAR, North Charleston, SC. 428 pp. Available from: <u>http://sedarweb.org/sedar-51</u>
- SEDAR (Southeast Data Assessment and Review) 52. 2018. SEDAR 51 Stock Assessment Report for Gulf of Mexico Red Snapper. SEDAR, North Charleston, SC. 434 pp. Available from: <u>http://sedarweb.org/sedar-52</u>
- SEDAR (Southeast Data Assessment and Review) 54. 2017. SEDAR 54 Stock Assessment Report for HMS Sandbar Shark. SEDAR, North Charleston, SC. 193 pp. Available from: <u>http://sedarweb.org/sedar-54</u>
- SEDAR (Southeast Data Assessment and Review) 61. 2019. SEDAR 61 Stock Assessment Report for Gulf of Mexico Red Grouper. SEDAR, North Charleston, SC. 285 pp. Available from: <u>http://sedarweb.org/sedar-61</u>
- SEDAR (Southeast Data Assessment and Review) 63. 2018. SEDAR 63 Stock Assessment Report for Gulf Menhaden. SEDAR, North Charleston, SC. 352 pp. Available from: <u>http://sedarweb.org/sedar-63</u>
- SEDAR (Southeast Data Assessment and Review) 67. 2020. SEDAR 67 Stock Assessment Report for Gulf of Mexico Vermilion Snapper. SEDAR, North Charleston, SC. 199 pp. Available from: <u>http://sedarweb.org/sedar-67</u>
- SEDAR (Southeast Data Assessment and Review) 08. 2010. SEDAR 08 Spiny Lobster Update Assessment Review Workshop Report. SEDAR, North Charleston, SC. 128 pp. Available from: <u>http://sedarweb.org/sedar-08</u>
- Serpetti, N., Baudron, A.R., Burrows, M.T., Payne, B.L., Helaouet, P., Fernandes, P.G., and Heymans, J.J. 2017. Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries. Sci. Rep. 7:1–15
- Spies, R.B., Senner, S., and Robbins, C.S. 2016. An Overview of the Northern Gulf of Mexico Ecosystem. Gulf Mex. Sci. 33:9
- Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., and Christensen, V. 2013. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial– temporal data. Ecol. Modell. 263:139–151

- Surma, S., Pitcher, T.J., Kumar, R., Varkey, D., Pakhomov, E.A., and Lam, M.E. 2018. Herring supports Northeast Pacific predators and fisheries: Insights from ecosystem modelling and management strategy evaluation. PLoS One 13:e0196307
- Tam, J., Taylor, M.H., Blaskovic, V., Espinoza, P., Ballón, R.M., Díaz, E., Wosnitza-Mendo, C., Argüelles, J., Purca, S., and Ayón, P. 2008. Trophic modeling of the Northern Humboldt Current Ecosystem, part I: comparing trophic linkages under La Niña and El Niño conditions. Prog. Oceanogr. 79:352–365
- Tarnecki, J.H., and Patterson III, W.F. 2015. Changes in red snapper diet and trophic ecology following the Deepwater Horizon oil spill. Mar. Coast. Fish. 7:135–147
- Trites, A., and Heise, K. 1996. Marine mammals (in the southern BC shelf model). Mass-Balance Model. North-eastern Pacific Ecosyst. 51–55
- Turner, R.E. 1997. Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. Estuaries 20:1–13
- Ulanowicz, R.E. 1986. Growth and development: ecosystems phenomenology. Springer Science & Business Media.
- Ulanowicz, R.E. 1995. Ecosystem trophic foundations: Lindeman exonerata. Complex Ecol. part-whole Relat. Ecosyst. Prentice Hall, Englewood Cliffs, NJ 549–550
- Ulanowlcz, R.E., and Norden, J.S. 1990. Symmetrical overhead in flow networks. Int. J. Syst. Sci. 21:429–437
- Vaughan, D.S., Govoni, J.J., and Shertzer, K.W. 2011. Relationship between Gulf menhaden recruitment and Mississippi River flow: model development and potential application for management. Mar. Coast. Fish. 3:344–352
- Vidal, L., and Pauly, D. 2004. Integration of subsystems models as a tool toward describing feeding interactions and fisheries impacts in a large marine ecosystem, the Gulf of Mexico. Ocean Coast. Manag. 47:709–725
- Walsh, J.J., Jolliff, J.K., Darrow, B.P., Lenes, J.M., Milroy, S.P., Remsen, A., Dieterle, D.A., Carder, K.L., Chen, F.R., Vargo, G.A., Weisberg, R.H., Fanning, K.A., Muller-Karger, F.E., Shinn, E., Steidinger, K.A., Heil, C.A., Tomas, C.R., Prospero, J.S., Lee, T.N., Kirkpatrick, G.J., Whitledge, T.E., Stockwell, D.A., Villareal, T.A., Jochens, A.E., and Bontempi, P.S. 2006. Red tides in the Gulf of Mexico: Where, when, and why? J. Geophys. Res. 111:C11003. https://doi.org/10.1029/2004JC002813.
- Walters, C., Christensen, V., and Pauly, D. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. fish Biol. Fish. 7:139–172

- Walters, C., Martell, S.J.D., Christensen, V., and Mahmoudi, B. 2008. An Ecosim model for exploring Gulf of Mexico ecosystem management options: implications of including multistanza life-history models for policy predictions. Bull. Mar. Sci. 83:251–271
- Walters, W.J., and Christensen, V. 2018. Ecotracer: analyzing concentration of contaminants and radioisotopes in an aquatic spatial-dynamic food web model. J. Environ. Radioact. 181:118–127
- Walters, C., Christensen, V., Walters, W., and Rose, K. 2010. Representation of multistanza life histories in Ecospace models for spatial organization of ecosystem trophic interaction patterns. Bull. Mar. Sci. 86(2):439–459
- Yáñez-Arancibia, A., and Day, J.W. 2004. The Gulf of Mexico: towards an integration of coastal management with large marine ecosystem management. Ocean Coast. Manag. 47:537–563

## **Figures**



Figure 1. US Gulf-wide EwE model's spatial domain (purple color) includes aquatic habitat in the coastal and shelf areas of the US GoM down to a depth of 400 m.



Figure 2. US Gulf-wide EwE model's forcing functions for (A) Relative annual fishing effort by fleet, and (B) Relative monthly nutrient influx from the Mississippi-Atchafalaya river basin.



Figure 3. Biomass of functional groups (labeled by group number) versus trophic level (*TL*). Biomass is log10 transformed. Line represents fitted linear regression (estimate = 3.47, slope = -1.56, Adjusted R<sup>2</sup> = 0.74, F<sub>1,76</sub> = 215.5, p-value: < 0.0001). Shaded area represents linear regression <u>+</u> 95% Confidence Interval (CI).



Figure 4. Trends in log-scaled biomass (*B*), production (*P*), consumption (*Q*), respiration (*R*) and vital rates (*P*/*B*, *Q*/*B*, *R*/*B*) across trophic levels. Note that biomass is logtransformed because biomass spans several orders of magnitude. Functional groups, as described in Table 1, are organized by decreasing trophic level (from left to right). As per Link (2010), homeothermic groups (e.g., marine mammals, seabirds) are excluded from regression analyses for *Q*/*B* and *P*/*B*.



Figure 5. Flow diagram of the US Gulf-wide Ecopath model. Nodes represent modeled trophic groups with the size of the node proportional to biomass and lines represent trophic interactions between groups. Numbers on the left represent trophic level. As an example, the age-2 Gulf menhaden functional group is colored orange, the main food sources of which are phytoplankton, detritus, and zooplankton (green lines) and which supports the removals (predation and fishing, red lines) from 32 trophic groups and 3 commercial fleets.



Figure 6. The contribution of Gulf menhaden to the diets of the different predators in the US Gulf-wide EwE model (A). Predation mortality for age-0 (B), age-1 (C), age-2 (D), age-3 (E) and age-4+ (F) Gulf menhaden by predator.



Figure 7. Time series fits for group biomass. Observed (black points) and predicted (grey lines) biomass estimates by year from the US Gulf-wide EwE model. The sum-of-squared errors (SSE) of model fits are given in squared brackets.



Figure 7-Continued. Time series fits for group biomass. Observed (black points) and predicted (grey lines) biomass estimates by year from the US Gulf-wide EwE model. The sum-of-squared errors (SSE) of model fits are given in squared brackets.



Figure 8. Time series fits for group catches. Observed (black points) and predicted (grey lines) biomass estimates by year from the US Gulf-wide EwE model. The sum-of-squared errors (SSE) of model fits are given in squared brackets. Note that for shallow-water and deep-water groupers, catch time series are used as forcing time series (Table 16).



Figure 8-Continued. Time series fits for group catches. Observed (black points) and predicted (grey lines) biomass estimates by year from the US Gulf-wide EwE model. The sum-of-squared errors (SSE) of model fits are given in squared brackets. Note that for red drum, catch time series are used as forcing time series (Table 16).



Figure 9.  $F_{MSY}$  for selected species. Red lines represent a stationary system in which all other groups have fixed biomass, whereas blue lines represent compensatory systems, in which the other groups' biomasses change in response to the change in the target group. Red and blue dashed lines represent the EwE stationary and compensatory systems  $F_{MSY}$  estimates. Yellow lines represent the  $F_{MSY}$  estimated by single species stock assessment. For more information on  $F_{MSY}$  estimates from stock assessment, see Table 24.



**FMSY** Assessment

Figure 10. Relationship between estimates of  $F_{MSY}$  derived from EwE and the estimates produced by stock assessments.  $F_{MSY}$  was  $log_{10}(X+1)$  transformed. Numbers in the plot represent functional group numbers (for list of names see Table 1). For more information about the  $F_{MSY}$  estimates see Table 24.



Figure 11. Ecosim ecosystem indices of (A) trophic level of the catch and (B) Shannon's diversity index.

# Tables

Table 1. Marine taxa included in functional groups of the US Gulf-wide EwE model. For the full list of species see supplementary file. Guilds include: Benthic Invertebrates (BI), Demersal and Medium Pelagic Piscivores (DMPP), Demersals (D), Detritus (DET), Marine Mammals and Birds (MMB), Phytoplankton (PHY), Planktivores (PLK), Primary Producers (PP), Sharks and HMS (S and H), Small Pelagics (SP), and Zooplankton (ZOO).

| No       | Functional group           | Guild   | Included taxonomic groups                              |
|----------|----------------------------|---------|--------------------------------------------------------|
| 1        | Coastal dolphins           | MMB     | Bottlenose dolphins, spinner dolphins                  |
| 2        | Offshore dolphins          | MMB     | Delphinidae                                            |
| 3        | Baleen whales              | MMB     | Balaenoptera sp.                                       |
| 4        | Seabird                    | MMB     | Families of Phalacrocoracidae, Pelecanidae,            |
|          |                            |         | Laridae, Gaviidae, Sternidae, Hydrobatidae,            |
|          |                            |         | Procellariidae, Pandionidae, and Accipitridae.         |
| 5        | Sea turtle                 | D       | Cheloniidae and Dermochelyidae.                        |
| 6        | Blacktip shark             | S and H | Carcharhinus limbatus                                  |
| 7        | Dusky shark                | S and H | Carcharhinus obscurus                                  |
| 8        | Sandbar shark              | S and H | Carcharhinus plumbeus                                  |
| 9        | Large coastal sharks       | S and H | Sphyrnidae, Odontaspididae, large                      |
|          |                            |         | Carcharhinidae.                                        |
| 10       | Large oceanic sharks       | S and H | Lamnidae, Alopiidae, <i>Prionace glauca</i>            |
| 11       | Atlantic sharpnose shark   | D       | Rhizoprionodon terraenovae                             |
| 12       | Small coastal sharks       | D       | Carcharhinidae and Triakidae families, and             |
|          |                            |         | Sphyrna tiburo.                                        |
| 13       | Yellowfin tuna             | S&H     | Thunnus albacares                                      |
| 14       | Bluefin tuna               | S&H     | Thunnus thynnus                                        |
| 15       | Other tunas                | S&H     | Katsuwonus pelamis, Thunnus obesus, and                |
|          |                            |         | Thunnus Atlanticus                                     |
| 16       | Billfish                   | S&H     | Istiophoridae                                          |
| 17       | Swordfish                  | S&H     | Xiphias gladius                                        |
| 18       | Pelagic coastal piscivores | DMPP    | Coryphaenidae, Pomatomidae, Carangidae,                |
|          |                            |         | Echeneidae, Belonidae, Lobotidae, <i>Sarda</i>         |
|          |                            |         | spp., Euthynnus spp., Auxis spp.,                      |
|          |                            |         | Acanthocybium solandri                                 |
| 19       | Amberjack                  | DMPP    | Seriola dumerili, S. fasciata                          |
| 20       | Cobia                      | DMPP    | Rachycentron canadum                                   |
| 21       | King mackerel (0-1yr)      | DMPP    | Age-0 to 1 year Scomberomorus cavalla                  |
| 22       | King mackerel (1+yr)       | DMPP    | Age-1 and older S. cavalla                             |
| 23       | Spanish mackerel (0-1yr)   | DMPP    | Age-0 to 1 year S. maculatus                           |
| 24       | Spanish mackerel (1+yr)    | DMPP    | Age-1 and older S. maculatus                           |
| 25       | Skates-rays                | D       | Rajidae, Gymnuridae, Myliobatidae,                     |
|          |                            |         | Dasyatidae, Rhinobatidae, Ginglymostoma                |
| 26       | $G_{2}$                    | П       | Cirialuili<br>Ago 0 to 2 years Mysteranorea misrolonia |
| 20<br>27 | Gag grouper (2 )           | ס       | Age-3 and older years M microlonic                     |
| 21<br>20 | Bod groupor (0.2vr)        | ס       | Aye-3 and order years <i>IVI.</i> Initionepis          |
| ∠0<br>20 | Red grouper (2.5yr)        |         | Age 2 and older years E mario                          |
| 29       | reu gioupei (s+yi)         | ט       | Aye-3 and older years E. Mono                          |

Table 1-Continued. Marine taxa included in functional groups of the US Gulf-wide EwE model. For the full list of species see supplementary file. Guilds include: Benthic Invertebrates (BI), Demersal and Medium Pelagic Piscivores (DMPP), Demersals (D), Detritus (DET), Marine Mammals and Birds (MMB), Phytoplankton (PHY), Planktivores (PLK), Primary Producers (PP), Sharks and HMS (S and H), Small Pelagics (SP), and Zooplankton (ZOO).

| No  | Functional group              | Guild   | Included taxonomic groups                                                                                     |
|-----|-------------------------------|---------|---------------------------------------------------------------------------------------------------------------|
| 30  | Yellowedge grouper (0-3yr)    | D       | Age-0 to 3 years Hyporthodus flavolimbatus                                                                    |
| 31  | Yellowedge grouper (3+yr)     | D       | Age-3 and older years H. flavolimbatus                                                                        |
| 32  | Goliath grouper               | D       | E. itajara                                                                                                    |
| 33  | Deep-water grouper            | D       | Hyporthodus niveatus, H. nigritus, E.                                                                         |
|     |                               |         | drummondhavi. H. mvstacinus                                                                                   |
| 34  | Shallow-water grouper         | D       | Epinephelus striatus, Mycteroperca venenosa,<br>M. interstitialis, E. adscensionis, E. guttatus, M.<br>phenax |
| 35  | Red snapper (0yr)             | D       | Age-0 to 1 year Lutianus campechanus                                                                          |
| 36  | Red snapper (1-2vr)           | D       | Age-1 to 2 years Lutianus campechanus                                                                         |
| 37  | Red snapper (3+vr)            | D       | Age-3 and older years Lutianus campechanus                                                                    |
| 38  | Vermilion snapper             | D       | Rhomboplites aurorubens                                                                                       |
| 39  | Mutton snapper                | D       | l utianus analis                                                                                              |
| 40  | Other snapper                 | D       | Lutianidae                                                                                                    |
| 41  | Coastal piscivores            | DMPP    | Megalopidae Elopidae Centropomidae                                                                            |
| ••• |                               | Divin 1 | Albulidae                                                                                                     |
| 42  | Sea trout                     | DMPP    | Cynoscion spp.                                                                                                |
| 43  | Oceanic piscivores            | DMPP    | Trichiuridae, Gempylidae, Bramidae, Merluccius                                                                |
|     | ·                             |         | albidus                                                                                                       |
| 44  | Benthic piscivores            | DMPP    | Paralichthvidae, Uranoscopidae, Svnodontidae,                                                                 |
|     |                               |         | Ophichthidae, Squatinidae                                                                                     |
| 45  | Reef piscivores               | DMPP    | Holocentridae, Sphyraenidae, Muraenidae,                                                                      |
|     |                               |         | Congridae, Rypticus spp.                                                                                      |
| 46  | Reef invertebrate feeders     | D       | Serranidae, Labridae, Scorpaenidae,                                                                           |
|     |                               |         | Chaetodontidae, Priacanthidae, Haemulidae,                                                                    |
|     |                               |         | Sparidae, Ocyurus chrysurus                                                                                   |
| 47  | Demersal coastal invertebrate | D       | Sciaenidae, Ariidae, Gerreidae, Trachinotus                                                                   |
|     | feeders                       |         | spp., Chloroscombrus chrysurus, Oligoplites                                                                   |
|     |                               |         | saurus, Pagrus pagrus, Haemulon aurolineatum,                                                                 |
|     |                               |         | Orthopristis chrvsoptera                                                                                      |
| 48  | Red drum                      | D       | Sciaenops ocellatus                                                                                           |
| 49  | Benthic coastal invertebrate  | D       | Pleuronectiformes, Triglidae, Polynemidae,                                                                    |
|     | feeders                       | -       | Gobiidae Ophidiidae                                                                                           |
| 50  | Tilefish                      | D       | Malacanthidae                                                                                                 |
| 51  | Grav triggerfish              | D       | Balistes capriscus                                                                                            |
| 52  | Coastal omnivores             | D       | Tetraodontiformes Ephippidae Lagodon                                                                          |
| 02  |                               | 2       | rhomboides                                                                                                    |
| 53  | Reef omnivores                | D       | Pomacanthidae, Acanthuridae, Pomacentridae,                                                                   |
|     |                               |         | Scaridae                                                                                                      |
| 54  | Surface pelagics              | SP      | Exocoetidae, Hemiramphidae                                                                                    |
Table 1-Continued. Marine taxa included in functional groups of the US Gulf-wide EwE model. For the full list of species see supplementary file. Guilds include: Benthic Invertebrates (BI), Demersal and Medium Pelagic Piscivores (DMPP), Demersals (D), Detritus (DET), Marine Mammals and Birds (MMB), Phytoplankton (PHY), Planktivores (PLK), Primary Producers (PP), Sharks and HMS (S and H), Small Pelagics (SP), and Zooplankton (ZOO).

| No  | Functional group             | Guild | Included taxonomic groups                   |
|-----|------------------------------|-------|---------------------------------------------|
| 55  | Large oceanic planktivores   | PLK   | Manta birostris, Cetorhinus maximus,        |
|     |                              |       | Rhincodon typus, Mola                       |
| 56  | Oceanic planktivores         | PLK   | Argentinidae, Nomeidae                      |
| 57  | Sardine-herring-scad         | SP    | Clupeidae, Decapterus spp.                  |
| 58  | Menhaden (0yr)               | SP    | Brevoortia spp. Ages 0 to 1 year            |
| 59  | Menhaden (1yr)               | SP    | Brevoortia spp. Ages 1 to 2 years           |
| 60  | Menhaden (2yr)               | SP    | Brevoortia spp. Ages 2 to 3 years           |
| 61  | Menhaden (3yr)               | SP    | Brevoortia spp. Ages 3 to 4 years           |
| 62  | Menhaden (4+yr)              | SP    | Brevoortia spp. Ages 4 and older years      |
| 63  | Anchovy-silverside-killifish | SP    | Engraulidae, Atherinidae, Fundulidae        |
| 64  | Mullet                       | SP    | Mugilidae                                   |
| 65  | Butterfish                   | SP    | Stromateidae                                |
| 66  | Cephalopod                   | SP    | Cephalopoda                                 |
| 67  | Pink shrimp                  | BI    | Farfantepenaeus duorarum                    |
| 68  | Brown shrimp                 | BI    | Farfantepenaeus aztecus                     |
| 69  | White shrimp                 | BI    | Litopenaeus setiferus                       |
| 70  | Crab                         | BI    | Portunidae                                  |
| 71  | Sessile epifauna             | BI    | Porifera, Anthozoa, Tunicata, Bryozoa,      |
|     |                              |       | Hydrozoa, Crinoidea, Mytilidae              |
| 72  | Mobile epifauna              | BI    | Malacostraca, Ostracoda, Echinoderma,       |
| 70  | Zeenlenliten                 | 700   | Gastropoda, Pectinidae                      |
| 73  | Zooplankton                  | 200   | Copepoda, Euphausiacea, Scyphozoa,          |
| 74  | Infauna                      | BI    | Annelida Nematoda Bivalvia                  |
| ••• |                              | 2.    | Thalassinidea. Hippidae                     |
| 75  | Algae                        | PP    | Rhodophyta, Chlorophyta, Phaeophyta,        |
|     | -                            |       | Cyanophyta, Xanthophyta, Cyanobacteria      |
| 76  | Seagrass                     | PP    | Marine angiosperms                          |
| 77  | Phytoplankton                | PHY   | Bacillariophyceae, Dinoflagellata, Protozoa |
| 78  | Detritus                     | DET   | Calcareous debris, mud, organic matter,     |
|     |                              |       | fishery discards, detritus                  |

Table 2. Fishing fleets included within the US Gulf-wide ecosystem model and ranked in order of total landings from 1980 through 2016 for commercial gears and from 1986 through 2017 for recreational modes. Table 3 provides details on targeted species by each fleet and its respective gear.

| Fishing fleet             | Landings (pounds) | Landings (%) |
|---------------------------|-------------------|--------------|
| Commercial                |                   |              |
| Purse Seine<br>(Menhaden) | 30,494,203,471    | 48.08        |
| Purse Seine (Other)       | 13,286,997,996    | 20.95        |
| Other                     | 8,156,193,396     | 12.86        |
| Bottom Trawl (Shrimp)     | 6,770,606,621     | 10.68        |
| Pots and Traps            | 1,641,872,320     | 2.59         |
| Nets                      | 1,506,410,456     | 2.38         |
| Dredge/Dig                | 507,228,383       | 0.8          |
| Handline                  | 356,135,429       | 0.56         |
| Bottom Trawl (Other)      | 338,174,455       | 0.53         |
| Longline (Fish)           | 289,596,500       | 0.46         |
| Longline (Pelagic)        | 44,376,564        | 0.07         |
| Longline (Shark)          | 33,852,150        | 0.05         |
| Recreational              |                   |              |
| Private                   | 1,720,319,405     | 68.09        |
| Charter                   | 414,438,918       | 16.40        |
| Headboat                  | 335,948,229       | 13.30        |
| Shore                     | 55,726,934        | 2.21         |

Table 3. Commercial fishing gears and classifications for the US Gulf-wide ecosystem model. The major species landed by each gear is also provided, where the number in parentheses represents the percent of total catch (1980-2016) composed of this species.

| Gear                        | Fishing fleet      | Main species caught (%)            |
|-----------------------------|--------------------|------------------------------------|
| Dredge Other                | Dredge/Dig         | OYSTER, EASTERN (99.8)             |
| Dredge Oyster, Common       | Dredge/Dig         | OYSTER, EASTERN (96.8)             |
| Tongs and Grabs, Oyster     | Dredge/Dig         | OYSTER, EASTERN (97.9)             |
| By Hand, Other              | Dredge/Dig         | OYSTER, EASTERN (30.3)             |
| Tongs and Grabs, Other      | Dredge/Dig         | OYSTER, EASTERN (98.8)             |
| Tongs Patent, Oyster        | Dredge/Dig         | OYSTER, EASTERN (99.8)             |
| By Hand, Oyster             | Dredge/Dig         | SHELLFISH (70.9)                   |
| Rakes, Other                | Dredge/Dig         | SHELLFISH (83.2)                   |
| Frog Grabs                  | Dredge/Dig         | SHELLFISH (100)                    |
| Rakes, Oyster               | Dredge/Dig         | SHELLFISH (100)                    |
| Shovels                     | Dredge/Dig         | OYSTER, EASTERN (100)              |
| Lines Hand, Other           | Handline           | SNAPPER, RED (17.7)                |
| Reel, Electric or Hydraulic | Handline           | SNAPPER, RED (31)                  |
| Rod and Reel                | Handline           | SNAPPER, YELLOWTAIL (20.9)         |
| Troll & Hand Lines Cmb      | Handline           | SNAPPER, YELLOWTAIL (40.1)         |
| Lines Troll Other           | Handline           | MACKEREL, KING AND CERO            |
|                             | Tidildinie         | (53.5)                             |
| Reel, Manual                | Handline           | FINFISHES, UNC GENERAL<br>(47.1)   |
| Lines Troll, Green-Stick    | Handline           | FINFISHES, UNC GENERAL (100)       |
| Lines Power Troll Other     | Handline           | FINFISHES, UNC GENERAL (100)       |
| Lines Jigging Machine       | Handline           | FINFISHES, UNC GENERAL (100)       |
| Lines Long, Reef Fish       | Longline (Fish)    | GROUPER, RED (47.5)                |
| Lines Long Set With Hooks   | Longline (Fish)    | TUNA, YELLOWFIN (55)               |
| Lines Trot With Baits       | Longline (Fish)    | DRUM, BLACK (88.4)                 |
| Lines Long, Vertical        | Longline (Fish)    | GROUPER, RED (60.1)                |
| Lines Electrical Devices    | Longline (Fish)    | FINFISHES, UNC GENERAL (100)       |
| Lines Long Drift With Hooks | Longline (Pelagic) | TUNA, YELLOWFIN (67.1)             |
| Lines Long, Shark           | Longline (Shark)   | FINFISHES, UNC GENERAL<br>(34.8)   |
| Skimmer Net                 | Nets               | SHRÍMP, WHITE (63)                 |
| Butterfly Nets              | Nets               | SHRIMP, BROWN (54.2)               |
| Cast Nets                   | Nets               | MULLET, STRIPED (LIZA) (81.9)      |
| Dip Nets, Common            | Nets               | SHAD, GIZZARD (61)                 |
| Brush Trap                  | Nets               | CRAB, BLUE, SOFT AND PEELER (88.7) |
| Dip Nets, Drop              | Nets               | LOBŚTER, CARIBBEAN SPINY<br>(99.9) |
| Brail Or Scoop              | Nets               | FINFISHES, UNC GENERAL<br>(98.5)   |

Table 3-Continued. Commercial fishing gears and classifications for the US Gulf-wide ecosystem model. The major species landed by each gear is also provided, where the number in parentheses represents the percent of total catch (1980-2016) composed of this species.

| Gear                              | Fishing fleet  | Main species caught (%)            |
|-----------------------------------|----------------|------------------------------------|
| Bag Nets                          | Nets           | FINFISHES, UNC GENERAL (100)       |
| Push Net                          | Nets           | FINFISHES, UNC GENERAL (100)       |
| Gill Nets, Drift, Runaround       | Nets           | MULLET, STRIPED (LIZA) (46.1)      |
| Entangling Nets (Gill) Unspc      | Nets           | MULLET, STRIPED (LIZA) (34.1)      |
| Gill Nets, Other                  | Nets           | DRUM, BLACK (31.5)                 |
| Trammel Nets                      | Nets           | DRUM, BLACK (24)                   |
| Gill Nets, Stake                  | Nets           | GARS (26.7)                        |
| Gill Nets, Sink/Anchor, Other     | Nets           | FINFISHES, UNC GENERAL<br>(98.2)   |
| Gill Nets, Drift, Other           | Nets           | FINFISHES, UNC GENERAL<br>(63.4)   |
| Gill Nets, Crab                   | Nets           | FINFISHES, UNC GENERAL (100)       |
| Fyke And Hoop Nets, Fish          | Nets           | CATFISHES & BULLHEADS (79.6)       |
| Fyke And Hoop Nets, Turtle        | Nets           | SHELLFISH (100)                    |
| Haul Seines, Beach                | Nets           | MULLET, STRIPED (LIZA) (69.8)      |
| Haul Seines, Long                 | Nets           | MULLET, STRIPED (LIZA) (36)        |
| Combined Gears                    | Other          | MENHADEN (64.2)                    |
| Not Coded                         | Other          | SHRIMP, BROWN (41.4)               |
| Unspecified Gear                  | Other          | SHRIMP, PINK (29.1)                |
| Diving Outfits, Other             | Other          | LOBSTER, CARIBBEAN SPINY<br>(48.5) |
| Hooks, Sponge                     | Other          | SPONGE, YELLOW (31.7)              |
| Spears                            | Other          | FLATFISH (58.2)                    |
| Forks                             | Other          | FLATFISH (73.3)                    |
| Various Gear, Fishponds<br>Hawaii | Other          | OYSTER, EASTERN (98.6)             |
| Harpoons, Turtle                  | Other          | SHELLFISH (100)                    |
| Pots And Traps, Other             | Pots and Traps | CRAB, DEEPSEA GOLDEN (60.2)        |
| Pots And Traps,<br>Crayfsh(frhwa) | Pots and Traps | CRAB, BLUE (45.9)                  |
| Slat Traps (Virginia)             | Pots and Traps | FINFISHES, UNC GENERAL<br>(99.3)   |
| Pots And Traps, Turtle            | Pots and Traps | SHELLFISH (70)                     |
| Pots And Traps, Shrimp            | Pots and Traps | SHRIMP, WHITE (65.6)               |
| Pots And Traps, Box Trap          | Pots and Traps | SHELLFISH (99.6)                   |
| Pots And Traps, Conch             | Pots and Traps | SHELLFISH (97.3)                   |
| Pots And Traps, Crab, Blue        | Pots and Traps | CRAB, BLUE (99.4)                  |
| Pots And Traps, Crab, Other       | Pots and Traps | CRAB, FLORIDA STONE CLAWS (98.6)   |
| Pots And Traps, Cmb               | Pots and Traps | CRAB, BLUE (48.8)                  |

Table 3-Continued. Commercial fishing gears and classifications for the US Gulf-wide ecosystem model. The major species landed by each gear is also provided, where the number in parentheses represents the percent of total catch (1980-2016) composed of this species.

| Gear                                           | Fishing fleet                              | Main species caught (%)                     |
|------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Pots, Unclassified                             | Pots and Traps                             | FINFISHES, UNC GENERAL (100)                |
| Pots And Traps, Fish<br>Pots And Traps, Eel    | Pots and Traps<br>Pots and Traps           | GRÓUPER, RED (34.9)<br>EEL, AMERICAN (79.5) |
| Pots And Traps, Spiny<br>Lobster               | Pots and Traps                             | LOBSTER, CARIBBEAN SPINY<br>(98)            |
| Purse Seines, Menhaden                         | Purse Seine<br>(Menhaden)                  | MENHADEN (100)                              |
| Encircling Nets (Purse)<br>Purse Seines, Other | Purse Seine (Other)<br>Purse Seine (Other) | MENHADEN (99.9)<br>MENHADEN (54.1)          |
| Lampara & Ring Nets,<br>Other                  | Purse Seine (Other)                        | BALLYHOO (95.4)                             |
| Trawls, Unspecified                            | Bottom Trawl (Other)                       | SHRIMP, WHITE (46.6)                        |
| Otter Trawl Bottom, Fish                       | Bottom Trawl (Other)                       | FINFISHES, UNC GENERAL<br>(93.4)            |
| Trawl Bottom, Paired                           | Bottom Trawl (Other)                       | FINFISHES, UNC GENERAL                      |
| Otter Trawl Bottom, Scallop                    | Bottom Trawl (Other)                       | SCALLOP, CALICO (94.7)                      |
| Beam Trawls, Other                             | Bottom Trawl (Other)                       | SHRIMP, MARINE, OTHER<br>(98.8)             |
| Beam Trawls, Chopsticks                        | Bottom Trawl (Other)                       | SHRIMP, BROWN (52)                          |
| Otter Trawl Bottom, Other                      | Bottom Trawl (Other)                       | SHRIMP, MARINE, OTHER<br>(100)              |
| Roller Frame Trawl                             | Bottom Trawl (Other)                       | SHRIMP, MARINE, OTHER<br>(74.1)             |
| Otter Trawl Bottom, Crab                       | Bottom Trawl (Other)                       | SHELLFISH (100)                             |
| Beam Trawls, Crab                              | Bottom Trawl (Other)                       | SHELLFISH (100)                             |
| Otter Trawl Bottom, Shrimp                     | Bottom Trawl (Shrimp)                      | SHRIMP, BROWN (52.8)                        |
| Beam Trawls, Shrimp                            | Bottom Trawl (Shrimp)                      | SHRIMP, MARINE, OTHER<br>(54.8)             |

Table 4. Parameters for initial biomass estimates (B, t km<sup>-2</sup>) and corresponding sources for the 1980 Ecopath model. – indicates no data required (e.g., multi-stanza, where biomass was estimated based on the input for the leading stanza) or available.

| No | Functional group           | Initial B | Source (Reference)                                                                                               |
|----|----------------------------|-----------|------------------------------------------------------------------------------------------------------------------|
| 1  | Coastal dolphins           | 0.0156    | Assumed 1980 Ecopath value = that estimated for                                                                  |
|    | ~                          |           | 2005 (Sagarese et al. 2017) due to lack of data                                                                  |
| 2  | Offshore dolphins          | 0.0156    | Assumed 1980 Ecopath value = that estimated for                                                                  |
| 3  | Baleen whales              | 0.0156    | Assumed 1980 Econath value = that estimated for                                                                  |
| 0  |                            | 0.0100    | 2005 (Sagarese <i>et al.</i> 2017) due to lack of data                                                           |
| 4  | Seabirds                   | 0.0119    | Assumed 1980 Ecopath value = that estimated for                                                                  |
|    |                            |           | 2005 (Sagarese et al. 2017) due to lack of data                                                                  |
| 5  | Sea turtles                | 0.0128    | Assumed 1980 Ecopath value = that estimated for                                                                  |
| 6  | Blacktin shark             | 0 0046    | 2005 (Sagarese et al. 2017) due to lack of data                                                                  |
| 7  | Diacklip Shark             | 0.0940    | $C_{1981}$ / $F_{1981}$ (SEDAR 29 Opticale)                                                                      |
| 0  | Sandhar shark              | 0.0090    | $C_{1980}$ / $T_{1980}$ (SEDAR 21 Opticale)                                                                      |
| 0  | Sanubai Shark              | 0.0014    | because of two area configuration (SEDAR 54)                                                                     |
| 9  | Large coastal sharks       | 0.0380    | $C_{1980} / F_{1980;1982AVG}$ (SEDAR 11)                                                                         |
| 10 | Large oceanic sharks       | 0.0275    | $C_{1982}/F_{1980}$ (ICCAT 2017a for shortfin mako)                                                              |
| 11 | Atlantic sharpnose shark   | 0.0013    | $C_{1980;1984AVG} / (F_{1980;1984AVG} / 2)$ (divided by two                                                      |
|    |                            |           | because of two area configuration, (SEDAR 34)                                                                    |
| 12 | Small coastal sharks       | 0.0009    | C <sub>1980:1984AVG</sub> / (Atlantic sharpnose <i>F</i> <sub>1980:1984AVG</sub> / 2)                            |
|    |                            |           | (divided by two because of two area configuration,                                                               |
| 12 | Vollowfin tuno             | 0 0009    | SEDAR 34, SEDAR 13)<br>$C_{\rm example} = \frac{1}{2} \left( \frac{E}{E} \right)^2 \left( \frac{E}{E} \right)^2$ |
| 10 |                            | 0.0000    | $C_{1980:1984 \text{ average}} = F(F \text{ assumed similar to } M)$                                             |
| 14 |                            | 0.0001    | $C_{1980}/F(Fassurfied similar to M)$                                                                            |
| 10 |                            | 0.0009    | C <sub>1980:1984AVG</sub> / F (F assumed similar to <i>M</i> )                                                   |
| 10 | Dillisti                   | 0.0010    | $C_{1980:1984AVG}$ / $\Gamma$ ( $\Gamma$ assumed similar to <i>M</i> )                                           |
| 17 | Swordlish                  | 0.0139    | $C_{1980}$ / F (F assumed similar to <i>M</i> )                                                                  |
| 18 | Pelagic coastal piscivores | 0.0617    | $C_{1980}$ / $F_{1980}$ (F borrowed from Amberjacks)                                                             |
| 19 | Amberjacks                 | 0.0291    | $C_{1980}/F_{1980}$ (SEDAR 33 Update)                                                                            |
| 20 |                            | 0.0111    | $C_{1980}/F_{1980}$ (SEDAR 28)                                                                                   |
| 21 | King mackerel (0-1yr)      | -         |                                                                                                                  |
| 22 | King mackerel (1+yr)       | 0.1401    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 38)                                                          |
| 23 | Spanish mackerel (0-1yr)   | -         | Multi-stanza                                                                                                     |
| 24 | Spanish mackerel (1+yr)    | 0.0629    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 28)                                                          |
| 25 | Skates-rays                | 0.0339    | $C_{1980}$ / <i>F</i> ( <i>F</i> assumed ~0.01, limited data)                                                    |
| 26 | Gag grouper (0-3yr)        | -         | Multi-stanza                                                                                                     |
| 27 | Gag grouper (3+yr)         | 0.0181    | C1980 / <i>F</i> 1980 (SEDAR 33 Update)                                                                          |
| 28 | Red grouper (0-3yr)        | -         | Multi-stanza                                                                                                     |
| 29 | Red grouper (3+yr)         | 0.0247    | $C_{1981 from NOAA landings} / F_{1986}$ (assumed similar)                                                       |
| 30 | Yellowedge grouper (0-3yr) | -         | Multi-stanza                                                                                                     |
| 31 | Yellowedge grouper (3+yr)  | 0.0483    | C <sub>1980</sub> / F <sub>1980</sub> (SEDAR 22)                                                                 |

Table 4-Continued. Parameters for initial biomass estimates (B, t km<sup>-2</sup>) and corresponding sources for the 1980 Ecopath model. – indicates no data required (e.g., multi-stanza, where biomass was estimated based on the input for the leading stanza) or available.

| No | Functional group                         | Initial B | Source (Reference)                                                                                           |
|----|------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------|
| 32 | Goliath grouper                          | 0.0014    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 47)                                                      |
| 33 | Deep-water grouper                       | 0.0067    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> ( <i>F</i> assumed similar to Yellowedge Grouper)               |
| 34 | Shallow-water grouper                    | 0.0126    | $C_{1981;1983AVG} / F(Fassumed similar to other shallow-water groupers like gag, red)$                       |
| 35 | Red snapper (0 yr)                       | -         | Multi-stanza                                                                                                 |
| 36 | Red snapper (1-2 yr)                     | -         | Multi-stanza                                                                                                 |
| 37 | Red snapper (3+ yr)                      | 0.0423    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 52)                                                      |
| 38 | Vermilion snapper                        | 0.0738    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 67)                                                      |
| 39 | Mutton snapper                           | 0.0154    | S C <sub>1981</sub> / <i>F</i> <sub>1981</sub> (SEDAR 15A)                                                   |
| 40 | Other snapper                            | 0.0134    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (Average <i>F</i> between mutton and vermilion)                 |
| 41 | Coastal piscivores                       | 0.0852    | C <sub>1980</sub> / <i>F</i> ( <i>F</i> assumed ~ 0.2)                                                       |
| 42 | Seatrout                                 | 0.1076    | C <sub>1980</sub> / <i>F</i> ( <i>F</i> assumed ~ 0.2)                                                       |
| 43 | Oceanic piscivores                       | 0.0074    | C <sub>1980</sub> / F (F assumed ~0.05)                                                                      |
| 44 | Benthic piscivores                       | 0.0115    | C <sub>1980:1982AVG</sub> / F (F assumed ~0.1)                                                               |
| 45 | Reef piscivores                          | 0.0364    | $C_{1980:1982AVG} / F(Fassumed \sim 0.05)$                                                                   |
| 46 | Reef invertebrate feeders                | 0.1828    | C <sub>1980:1982AVG</sub> / F (F assumed 0.05)                                                               |
| 47 | Demersal coastal<br>invertebrate feeders | 0.2551    | C <sub>1980</sub> / F (F assumed ~0.15)                                                                      |
| 48 | Red drum                                 | 0.1145    | C <sub>1980:1982AVG</sub> / F (F assumed ~0.1)                                                               |
| 49 | Benthic coastal<br>invertebrate feeders  | 0.0170    | C <sub>1980:1982AVG</sub> / F (F assumed 0.05)                                                               |
| 50 | Tilefish                                 | 0.0070    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 22)                                                      |
| 51 | Gray triggerfish                         | 0.0547    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 43)                                                      |
| 52 | Coastal omnivores                        | 0.0291    | $C_{1980:1982AVG} / F(Fassumed \sim 0.05)$                                                                   |
| 53 | Reef omnivores                           | 0.0015    | C <sub>1980:1982AVG</sub> / F (F assumed ~0.05)                                                              |
| 54 | Surface pelagics                         | 0.0064    | C <sub>1980</sub> / <i>F</i> ( <i>F</i> assumed ~0.05)                                                       |
| 55 | Large oceanic planktivores               | 0.1540    | Assumed 1980 Ecopath value = that estimated<br>for 2005 (Sagarese <i>et al.</i> 2017) due to lack of<br>data |
| 56 | Oceanic planktivores                     | 0.0004    | C <sub>1987</sub> / <i>F</i> ( <i>F</i> assumed ~0.05)                                                       |
| 57 | Sardine-herring-scad                     | 0.1517    | C <sub>1980</sub> / F ( <i>F</i> assumed 0.05)                                                               |
| 58 | Menhaden (0yr)                           | -         | Multi-stanza                                                                                                 |
| 59 | Menhaden (1yr)                           | -         | Multi-stanza                                                                                                 |
| 60 | Menhaden (2yr)                           | 2.0025    | C <sub>1980</sub> / <i>F</i> <sub>1980</sub> (SEDAR 63)                                                      |
| 61 | Menhaden (3yr)                           | -         | Multi-stanza                                                                                                 |
| 62 | Menhaden (4+yr)                          | -         | Multi-stanza                                                                                                 |

Table 4-Continued. Parameters for initial biomass estimates (B, t km<sup>-2</sup>) and corresponding sources for the 1980 Ecopath model. – indicates no data required (e.g., multi-stanza, where biomass was estimated based on the input for the leading stanza) or available.

| No | Functional group                    | Initial B | Source (Reference)                                                                                        |
|----|-------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------|
| 63 | Anchovies-<br>silversides-killifish | 0.0002    | C <sub>1981</sub> / <i>F</i> ( <i>F</i> assumed ~0.05)                                                    |
| 64 | Mullet                              | 0.2865    | C <sub>1980</sub> / F (F assumed ~0.15)                                                                   |
| 65 | Butterfish                          | 0.0236    | C <sub>1980</sub> / <i>F</i> ( <i>F</i> assumed ~0.05)                                                    |
| 66 | Cephalopods                         | 1.3800    | Assumed 1980 Ecopath value = that estimated for 2005 (Sagarese <i>et al.</i> 2017) due to lack of data    |
| 67 | Pink shrimp                         | 0.1386    | C <sub>1985</sub> [first year of catch data] / F <sub>1980</sub> [first year of F] (2018 Update)          |
| 68 | Brown shrimp                        | 0.0607    | C1984 [first year of catch data]/ F 1980 [first year of F] (2018 Update)                                  |
| 69 | White shrimp                        | 0.9962    | C1984 [first year of catch data] / F1980 [first year of F] (2018 Update)                                  |
| 70 | Crab                                | 0.1257    | C <sub>1980</sub> / <i>F</i> ( <i>F</i> assumed 0.5)                                                      |
| 71 | Sessile epifauna                    | 20        | Assumed 1980 Ecopath value = that estimated for 2005<br>(Sagarese <i>et al.</i> 2017) due to lack of data |
| 72 | Mobile epifauna                     | 15        | Assumed 1980 Ecopath value = that estimated for 2005 (Sagarese <i>et al.</i> 2017) due to lack of data    |
| 73 | Zooplankton                         | 13        | GoM menhaden EwE (Geers et al. 2016)                                                                      |
| 74 | Infauna                             | 18.5      | Assumed 1980 Ecopath value = that estimated for 2005<br>(Sagarese <i>et al.</i> 2017) due to lack of data |
| 75 | Algae                               | 29.8      | Coastal GoM EwE (Walters et al. 2008)                                                                     |
| 76 | Seagrass                            | 150       | Assumed 1980 Ecopath value = that estimated for 2005<br>(Sagarese <i>et al.</i> 2017) due to lack of data |
| 77 | Phytoplankton                       | 25        | Coastal GoM EwE (Walters et al. 2008)                                                                     |
| 78 | Detritus                            | 100       | Coastal GoM EwE (Walters et al. 2008)                                                                     |

| No | Functional group            | Initial P/B | Source                           | М     | M Source                                                                 | F <sub>1980</sub> | F Source                       |
|----|-----------------------------|-------------|----------------------------------|-------|--------------------------------------------------------------------------|-------------------|--------------------------------|
| 1  | Coastal dolphins            | 0.16        | Gray et al. (2014)               | -     | -                                                                        | -                 | -                              |
| 2  | Offshore dolphins           | 0.16        | Gray <i>et al.</i> (2014)        | -     | -                                                                        | -                 | -                              |
| 3  | Baleen whales               | 0.16        | Gray <i>et al.</i> (2014)        | -     | -                                                                        | -                 | -                              |
| 4  | Seabird                     | 0.25        | Sagarese <i>et al.</i><br>(2017) | -     | -                                                                        | -                 | -                              |
| 5  | Sea turtle                  | 0.31        | Sagarese <i>et al.</i><br>(2017) | -     | -                                                                        | -                 | -                              |
| 6  | Blacktip shark              | 0.161       | M + F                            | 0.153 | SEDAR 29 Update – age-<br>independent <i>M</i>                           | 0.008             | SEDAR 29 Update                |
| 7  | Dusky shark                 | 0.084       | M + F                            | 0.066 | SEDAR 21 Update – age-<br>independent <i>M</i>                           | 0.018             | SEDAR 21 Update                |
| 8  | Sandbar shark               | 0.234       | M x 2                            | 0.117 | SEDAR 54 – ages 7-31                                                     | 0.054             | SEDAR 54                       |
| 9  | Large coastal sharks        | 0.13        | M + F                            | 0.125 | Guesstimate based on<br>sandbar/blacktip                                 | 0.005             | SEDAR 11                       |
| 10 | Large oceanic sharks        | 0.144       | M + F                            | 0.125 | Guesstimate based on<br>sandbar/blacktip                                 | 0.019             | ICCAT 2017a (shortfin<br>mako) |
| 11 | Atlantic sharpnose<br>shark | 0.439       | M + F                            | 0.23  | SEDAR 34 (average between low [0.209] and high [0.256])                  | 0.209             | SEDAR 34                       |
| 12 | Small coastal sharks        | 0.43        | <i>M</i> + <i>F</i> (from 11)    | 0.222 | SEDAR 34 bonnethead<br>(average between low [0.199]<br>and high [0.244]) | 0.209             | SEDAR 34                       |
| 13 | Yellowfin tuna              | 1.08        | M x 2                            | 0.54  | ICCAT 2016                                                               | NA                | Not Available (GOM+)           |
| 14 | Bluefin tuna                | 0.2         | M x 2                            | 0.1   | ICCAT 2017c                                                              | NA                | Not Available (GOM+)           |
| 15 | Other tunas                 | 0.4         | <i>M</i> x 2                     | 0.2   | ICCAT 2015 (Bigeye Tuna)                                                 | NA                | Not Available (GOM+)           |
| 16 | Billfish                    | 0.3         | <i>M</i> x 2                     | 0.15  | ICCAT 2018 (Blue Marlin)                                                 | NA                | Not Available (GOM+)           |
| 17 | Swordfish                   | 0.4         | <i>M</i> x 2                     | 0.2   | ICCAT 2017b                                                              | NA                | Not Available (GOM+)           |

| No | Functional group           | Initial P/B | Source    | М     | <i>M</i> Source                                | F <sub>1980</sub> | F Source           |
|----|----------------------------|-------------|-----------|-------|------------------------------------------------|-------------------|--------------------|
| 18 | Pelagic coastal piscivores | 0.76        | M + F     | 0.6   | Average <i>M</i> (see Table 6)                 | 0.16              | Assumed similar to |
|    |                            |             | (from 19) |       |                                                |                   | amberjack in 1980  |
| 19 | Amberjack                  | 0.438       | M + F     | 0.28  | SEDAR 33 Update –                              | 0.158             | SEDAR 33 Update    |
|    |                            |             |           |       | Hoenig <sub>teleost</sub> (1983)               |                   |                    |
| 20 | Cobia                      | 0.624       | M + F     | 0.38  | SEDAR 28 – Hoenig <sub>teleost</sub> (1983)    | 0.244             | SEDAR 28           |
| 21 | King mackerel (0-1yr)      | 1.459       | Multi-    | 0.657 | SEDAR 38 – age-0                               | 0.802             | SEDAR 38           |
|    |                            |             | stanza    |       |                                                |                   |                    |
| 22 | King mackerel (1+yr)       | 0.218       | M + F     | 0.17  | SEDAR 38 – Hoenig <sub>teleost</sub> (1983)    | 0.048             | SEDAR 38           |
| 23 | Spanish mackerel (0-1yr)   | 1.806       | M + F     | 0.4   | SEDAR 28 – age-0                               | 1.406             | SEDAR 28           |
| 24 | Spanish mackerel (1+yr)    | 0.511       | M + F     | 0.38  | SEDAR 28 – Hoenig <sub>teleost</sub> (1983)    | 0.131             | SEDAR 28           |
| 25 | Skates-rays                | 0.39        | M + F     | 0.38  | Average <i>M</i> (see Table 6)                 | 0.01              | Assumed            |
| 26 | Gag grouper (0-3yr)        | 0.573       | M + F     | 0.403 | SEDAR 33 Update – average age-0                | 0.169             | SEDAR 33 Update    |
|    |                            |             |           |       | (0.55), age-1 (0.37), age-2 (0.29)             |                   |                    |
| 27 | Gag grouper (3+yr)         | 0.369       | M + F     | 0.134 | SEDAR 33 Update –                              | 0.235             | SEDAR 33 Update    |
|    |                            |             |           |       | Hoenig <sub>teleost</sub> (1983)               |                   |                    |
| 28 | Red grouper (0-3yr)        | 0.414       | M + F     | 0.413 | SEDAR 61 – average age-0 (0.56),               | 0                 | SEDAR 61           |
|    |                            |             |           |       | age-1 (0.38), age-2 (0.30)                     |                   |                    |
| 29 | Red grouper (3+yr)         | 0.391       | M + F     | 0.14  | SEDAR 61 – Hoenig <sub>teleost</sub> (1983)    | 0.251             | SEDAR 61           |
| 30 | Yellowedge grouper (0-3yr) | 0.317       | M + F     | 0.317 | SEDAR 22 – average age-0 (0.44),               | 0                 | SEDAR 22           |
|    |                            |             |           |       | age-1 (0.29), age-2 (0.22)                     |                   |                    |
| 31 | Yellowedge grouper (3+yr)  | 0.099       | M + F     | 0.073 | SEDAR 22 – Hoenig <sub>teleost</sub> (1983)    | 0.026             | SEDAR 22           |
| 32 | Goliath grouper            | 0.332       | M + F     | 0.12  | SEDAR 47 – Hoenig <sub>teleost</sub> (1983)    | 0.212             | SEDAR 47           |
| 33 | Deep-water grouper         | 0.118       | M + F     | 0.092 | Hoenig <sub>teleost</sub> (1983) (max age = 45 | 0.026             | Assumed similar to |
|    |                            |             |           |       | yr [speckled hind], 35 yr [snowy];             |                   | Yellowedge         |
|    |                            |             |           |       | SEDAR 49)                                      |                   |                    |

| No | Functional group          | Initial P/B | Source       | М     | <i>M</i> Source                                                                                            | F <sub>1980</sub> | F Source                  |
|----|---------------------------|-------------|--------------|-------|------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|
| 34 | Shallow-water grouper     | 0.349       | M + F        | 0.149 | Hoenig <sub>teleost</sub> (1983) (max age = 28 yr;                                                         | 0.2               | Assumed similar           |
|    |                           |             |              |       | yellowmouth SEDAR 49)                                                                                      |                   | to other shallow          |
|    |                           |             |              |       |                                                                                                            |                   | groupers                  |
| 35 | Red snapper (0yr)         | 1           | M + F        | 1     | SEDAR 52 – age-0                                                                                           | -                 | -                         |
| 36 | Red snapper (1-2yr)       | 1.63        | M + F        | 1.148 | SEDAR 52 – average age-1 (1.6), age-2<br>(0.695)                                                           | 0.482             | SEDAR 52                  |
| 37 | Red snapper (3+yr)        | 0.327       | M + F        | 0.075 | SEDAR 52 (SS) – Hoenig <sub>teleost</sub> (1983)                                                           | 0.252             | SEDAR 52                  |
| 38 | Vermilion snapper         | 0.262       | M + F        | 0.25  | SEDAR 67 (SS) – life history working<br>group recommendation (Hoenig <sub>teleost</sub> (1983)<br>too low) | 0.012             | SEDAR 67                  |
| 39 | Mutton snapper            | 0.251       | M + F        | 0.11  | SEDAR 15A Update – Hoenig <sub>teleost</sub> (1983)                                                        | 0.141             | SEDAR 15A<br>Update       |
| 40 | Other snapper             | 0.291       | M + F        | 0.15  | SEDAR 51 – Hoenig <sub>teleost</sub> (1983)                                                                | 0.141             | Assumed similar to Mutton |
|    |                           |             |              |       |                                                                                                            |                   | Snapper                   |
| 41 | Coastal piscivores        | 0.6         | M + F        | 0.4   | Average <i>M</i> (see Table 6)                                                                             | 0.2               | Guestimate                |
| 42 | Sea trout                 | 0.55        | M + F        | 0.35  | Hoenig <sub>teleost</sub> (1983) (max age = 12 yr<br>(spotted seatrout); FWC 2016                          | 0.2               | Guestimate                |
| 43 | Oceanic piscivores        | 0.71        | M + F        | 0.66  | Average <i>M</i> (see Table 6)                                                                             | 0.05              | Guestimate                |
| 44 | Benthic piscivores        | 0.6         | M + F        | 0.5   | Average <i>M</i> (see Table 6)                                                                             | 0.1               | Guestimate                |
| 45 | Reef piscivores           | 0.84        | M + F        | 0.79  | Average <i>M</i> (see Table 6)                                                                             | 0.05              | Guestimate                |
| 46 | Reef invertebrate feeders | 1.05        | M + F        | 1     | Average <i>M</i> (see Table 6)                                                                             | 0.05              | Guestimate                |
| 47 | Demersal coastal          | 0.9         | M + F        | 0.8   | Average <i>M</i> (see Table 6)                                                                             | 0.15              | Guestimate                |
|    | invertebrate feeders      |             |              |       |                                                                                                            |                   |                           |
| 48 | Red drum                  | 0.198       | <i>M</i> x 2 | 0.099 | Hoenig <sub>teleost</sub> (1983) (max age = 42 yr,<br>SEDAR 49)                                            | 0.1               | Guestimate                |

| No | Functional group             | Initial P/B | Source       | М               | <i>M</i> Source                             | F <sub>1980</sub> | F Source    |
|----|------------------------------|-------------|--------------|-----------------|---------------------------------------------|-------------------|-------------|
| 49 | Benthic coastal invertebrate | 1.25        | M + F        | 1.2             | Average <i>M</i> (see Table 6)              | 0.05              | Guestimate  |
|    | feeders                      |             |              |                 |                                             |                   |             |
| 50 | Tilefish                     | 0.136       | M + F        | 0.13            | SEDAR 22 – Life history                     | 0.006             | SEDAR 22    |
|    |                              |             |              |                 | workgroup recommendation                    |                   |             |
| 51 | Gray triggerfish             | 0.317       | M + F        | 0.28            | SEDAR 43 – Hoenig <sub>teleost</sub> (1983) | 0.037             | SEDAR 43    |
| 52 | Coastal omnivores            | 0.85        | M + F        | 0.8             | Average <i>M</i> (see Table 6)              | 0.05              | Guestimate  |
| 53 | Reef omnivores               | 1.03        | M + F        | 0.98            | Average <i>M</i> (see Table 6)              | 0.05              | Guestimate  |
| 54 | Surface pelagics             | 1.45        | M + F        | 1.4             | Average <i>M</i> (see Table 6)              | 0.05              | Guestimate  |
| 55 | Large oceanic planktivores   | 0.6         | Sagares      | e <i>et al.</i> | (2017)                                      |                   |             |
| 56 | Oceanic planktivores         | 0.55        | M + F        | 0.5             | Min <i>M</i> (see Table 6)                  | 0.05              | Guestimate  |
| 57 | Sardine-herring-scad         | 0.94        | <i>M</i> x 2 | 0.47            | Min <i>M</i> (see Table 6)                  |                   |             |
| 58 | Menhaden (0yr)               | 1.671       | M + F        | 1.67            | SEDAR 63                                    | 0.001             | SEDAR 63    |
| 59 | Menhaden (1yr)               | 1.509       | M + F        | 1.26            | SEDAR 63                                    | 0.249             | SEDAR 63    |
| 60 | Menhaden (2yr)               | 1.726       | M + F        | 1.1             | SEDAR 63                                    | 0.626             | SEDAR 63    |
| 61 | Menhaden (3yr)               | 1.52        | M + F        | 1.02            | SEDAR 63                                    | 0.5               | SEDAR 63    |
| 62 | Menhaden (4+yr)              | 1.417       | M + F        | 0.98            | SEDAR 63                                    | 0.437             | SEDAR 63    |
| 63 | Anchovy-silverside-killifish | 1.08        | <i>M</i> x 2 | 0.54            | Min <i>M</i> (see Table 6)                  | -                 | -           |
| 64 | Mullet                       | 0.49        | M + F        | 0.34            | Min <i>M</i> (see Table 6)                  | 0.15              | Guestimate  |
| 65 | Butterfish                   | 1.36        | <i>M</i> x 2 | 0.68            | Min <i>M</i> (see Table 6)                  | -                 | -           |
| 66 | Cephalopod                   | 3.5         |              |                 |                                             |                   |             |
| 67 | Pink shrimp                  | 3.766       | M + F        | 3.6             | Hart 2018a (0.3 per season)                 | 0.166             | 2018 Update |
| 68 | Brown shrimp                 | 5.216       | M + F        | 3.24            | Hart 2018b (3.24 per year)                  | 1.976             | 2018 Update |

| No | Functional group | Initial P/B | Source                 | М    | M Source             | $F_{1980}$ | F Source    |
|----|------------------|-------------|------------------------|------|----------------------|------------|-------------|
| 69 | White shrimp     | 3.322       | M + F                  | 3.24 | Hart 2018c (0.27 per | 0.082      | 2018 Update |
|    |                  |             |                        |      | month)               |            |             |
| 70 | Crab             | 1.1         | M + F                  | 1    | GDAR 01              | 0.1        | Guestimate  |
| 71 | Sessile epifauna | 5           | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 72 | Mobile epifauna  | 6           | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 73 | Zooplankton      | 10          | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 74 | Infauna          | 6           | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 75 | Algae            | 28          | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 76 | Seagrass         | 150         | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 77 | Phytoplankton    | 25          | Sagarese et al. (2017) | -    | -                    | -          | -           |
| 78 | Detritus         | -           | -                      | -    | -                    | -          | -           |

Table 6. Range of natural mortality (M) estimates for each fish functional group based on estimates from Fishbase.org and as calculated using the empirical equations of Pauly (1980) using weight or length.

| No | Functional group              | MMIN | MAVERAGE | MMAX |
|----|-------------------------------|------|----------|------|
| 6  | Blacktip shark                | 0.38 | 0.398    | 0.42 |
| 7  | Dusky shark                   | 0.08 | 0.087    | 0.1  |
| 8  | Sandbar shark                 | 0.13 | 0.128    | 0.13 |
| 9  | Large coastal sharks          | 0.08 | 0.197    | 0.64 |
| 10 | Large oceanic sharks          | 0.1  | 0.137    | 0.18 |
| 11 | Atlantic sharpnose shark      | 0.39 | 0.388    | 0.39 |
| 12 | Small coastal sharks          | 0.08 | 0.306    | 0.47 |
| 13 | Yellowfin tuna                | 0.48 | 0.588    | 0.69 |
| 14 | Bluefin tuna                  | 0.1  | 0.283    | 0.49 |
| 15 | Other tunas                   | 0.31 | 0.635    | 0.98 |
| 16 | Billfish                      | 0.36 | 0.464    | 0.59 |
| 17 | Swordfish                     | 0.16 | 0.184    | 0.21 |
| 18 | Pelagic coastal piscivores    | 0.21 | 0.637    | 1.9  |
| 19 | Amberjack                     | 0.43 | 0.431    | 0.43 |
| 20 | Cobia                         | 0.46 | 0.548    | 0.64 |
| 22 | King mackerel (1+yr)          | 0.3  | 0.299    | 0.3  |
| 24 | Spanish mackerel (1+yr)       | 0.53 | 0.531    | 0.53 |
| 25 | Skates-rays                   | 0.17 | 0.388    | 0.76 |
| 27 | Gag grouper (3+yr)            | 0.29 | 0.312    | 0.34 |
| 29 | Red grouper (3+yr)            | 0.27 | 0.325    | 0.38 |
| 31 | Yellowedge grouper (3+yr)     | 0.2  | 0.222    | 0.25 |
| 32 | Goliath grouper               | 0.23 | 0.246    | 0.26 |
| 33 | Deep-water grouper            | 0.13 | 0.21     | 0.3  |
| 34 | Shallow-water grouper         | 0.17 | 0.329    | 0.59 |
| 37 | Red snapper (3+yr)            | 0.27 | 0.329    | 0.41 |
| 38 | Vermilion snapper             | 0.36 | 0.386    | 0.41 |
| 39 | Mutton snapper                | 0.37 | 0.383    | 0.4  |
| 40 | Other snapper                 | 0.21 | 0.488    | 0.94 |
| 41 | Coastal piscivores            | 0.16 | 0.457    | 0.75 |
| 42 | Sea trout                     | 0.29 | 0.485    | 0.75 |
| 43 | Oceanic piscivores            | 0.13 | 0.664    | 1.11 |
| 44 | Benthic piscivores            | 0.22 | 0.498    | 0.77 |
| 45 | Reef piscivores               | 0.16 | 0.794    | 2.31 |
| 46 | Reef invertebrate feeders     | 0.28 | 1.007    | 2.28 |
|    | Demersal coastal invertebrate | 0 22 | 0 805    | 2 01 |
| 47 | feeders                       | 0.22 | 0.000    | 2.01 |
| 48 | Red drum                      | 0.66 | 0.717    | 0.78 |
|    | Benthic coastal invertebrate  | 0.37 | 1 256    | 3 30 |
| 49 | feeders                       | 0.07 | 1.200    | 0.00 |
| 50 | Tilefish                      | 0.23 | 0.242    | 0.26 |
| 51 | Gray triggerfish              | 0.54 | 0.592    | 0.64 |

Table 6-Continued. Range of natural mortality (M) estimates for each fish functional group based on estimates from Fishbase.org and as calculated using the empirical equations of Pauly (1980) using weight or length.

| No | Functional group             | $M_{MIN}$ | Maverage | <i>М</i> мах |
|----|------------------------------|-----------|----------|--------------|
| 52 | Coastal omnivores            | 0.41      | 0.805    | 1.46         |
| 53 | Reef omnivores               | 0.32      | 0.978    | 2.12         |
| 54 | Surface pelagics             | 1.06      | 1.406    | 1.87         |
| 55 | Large oceanic planktivores   | 0.04      | 0.079    | 0.13         |
| 56 | Oceanic planktivores         | 0.52      | 2.104    | 3.69         |
| 57 | Sardine-herring-scad         | 0.47      | 1.521    | 6.41         |
| 60 | Menhaden (2yr)               | 0.59      | 0.858    | 1.09         |
| 63 | Anchovy-silverside-killifish | 0.54      | 1.761    | 2.53         |
| 64 | Mullet                       | 0.34      | 0.622    | 0.78         |
| 65 | Butterfish                   | 0.68      | 1.921    | 2.98         |

Table 7. Range of consumption to biomass (Q/B) estimates for each functional group as calculated using the empirical equations of Pauly *et al.* (1990), Palomares and Pauly (1989), and Palomares and Pauly (1998). Average Q/B values were input as starting points whereas minimum and maximum Q/B values were used as bounds of reasonable parameters during model balancing. Final Q/B estimates are also shown along with their source. – indicates no data available.

| No | Functional group     | Q/B <sub>MIN</sub> | Q/BAVERAGE | Q/B <sub>MAX</sub> | Q/B  | Source                        |
|----|----------------------|--------------------|------------|--------------------|------|-------------------------------|
| 1  | Coastal dolphins     | -                  | -          | -                  | 15.0 | Chagaris et al. (2015)        |
| 2  | Offshore dolphins    | -                  | -          | -                  | 15.0 | Chagaris <i>et al.</i> (2015) |
| 3  | Baleen whales        | -                  | -          | -                  | 15.0 | Chagaris <i>et al.</i> (2015) |
| 4  | Seabird              | -                  | -          | -                  | 33.0 | Chagaris <i>et al.</i> (2015) |
| 5  | Sea turtle           | -                  | -          | -                  | 3.5  | Gray <i>et al.</i> (2014)     |
| 6  | Blacktip shark       | 3.1                | 3.6        | 4.5                | 3.2  | Within Q/B range              |
| 7  | Dusky shark          | 1.8                | 2.2        | 2.8                | 2.8  | Max Q/B                       |
| 8  | Sandbar shark        | 1.1                | 2.3        | 3.4                | 3.2  | Within range                  |
| 9  | Large coastal sharks | 1.1                | 2.6        | 4.5                | 3.0  | Within range                  |
| 10 | Large oceanic sharks | 0.9                | 2.7        | 9.6                | 2.7  | Average Q/B                   |
| 11 | Atlantic sharpnose   | 5.8                | 6.7        | 7.4                | 5.8  | Min Q/B                       |
| 12 | Small coastal sharks | 2.2                | 3.7        | 6.3                | 5.0  | Within range                  |
| 13 | Yellowfin tuna       | 4.3                | 8.4        | 11.6               | 8.4  | Average Q/B                   |
| 14 | Bluefin tuna         | 3                  | 3.8        | 4.3                | 4.3  | Max Q́/B                      |
| 15 | Other tunas          | 3.9                | 9.3        | 32.6               | 8.9  | Within range                  |
| 16 | Billfish             | 1.7                | 4.9        | 14.5               | 4.9  | Average Q/B                   |
| 17 | Swordfish            | 3.4                | 4          | 5.3                | 3.8  | Within range                  |
| 18 | Pelagic coastal      | 2.3                | 6.3        | 13                 | 6.3  | Average Q/B                   |
|    | piscivores           |                    |            |                    |      |                               |
| 19 | Amberjack            | 3.3                | 3.9        | 5.2                | 3.9  | Average Q/B                   |

Table 7-Continued. Range of consumption to biomass (Q/B) estimates for each functional group as calculated using the empirical equations of Pauly *et al.* (1990), Palomares and Pauly (1989), and Palomares and Pauly (1998). Average Q/B values were input as starting points whereas minimum and maximum Q/B values were used as bounds of reasonable parameters during model balancing. Final Q/B estimates are also shown along with their source. – indicates no data available.

| No       | Functional group                         | Q/B <sub>MIN</sub> | Q/BAVERAGE | Q/B <sub>MAX</sub> | Q/B        | Source                           |
|----------|------------------------------------------|--------------------|------------|--------------------|------------|----------------------------------|
| 20       | Cobia                                    | 3.4                | 4.1        | 4.8                | 4.1        | Average Q/B                      |
| 21       | King mackerel (0-1yr)                    | -                  | -          | -                  | 14.3       | Multi-stanza                     |
| 22       | King mackerel (1+yr)                     | 2.7                | 3.5        | 4                  | 3.5        | Average Q/B                      |
| 23       | Spanish mackerel (0-1yr)                 | -                  | -          | -                  | 19.8       | Multi-stanza                     |
| 24       | Spanish mackerel (1+yr)                  | 6                  | 7          | 8.3                | 5.2        | Geers <i>et al.</i><br>(2016)    |
| 25       | Skates-rays                              | 1                  | 7.6        | 64.6               | 4.8        | Within range                     |
| 26       | Gag grouper (0-3yr)                      | -                  | -          | -                  | 9.3        | Multi-stanza                     |
| 27       | Gag grouper (3+yr)                       | 3.5                | 4.3        | 5                  | 3.6        | Within range                     |
| 28       | Red grouper (0-3yr)                      | -                  | -          | -                  | 9.2        | Multi-stanza                     |
| 29       | Red grouper (3+yr)                       | 4.8                | 5.5        | 6.3                | 3.7        | Chagaris <i>et al.</i><br>(2015) |
| 30       | Yellowedge grouper (0-3yr)               | -                  | -          | -                  | 18.1       | Multi-stanza                     |
| 31       | Yellowedge grouper (3+yr)                | 3.2                | 3.9        | 4.6                | 3.7        | Within range                     |
| 32       | Goliath grouper                          | 2.7                | 3.3        | 4                  | 3.3        | Average Q/B                      |
| 33       | Deep-water grouper                       | 1.4                | 3.7        | 7.8                | 4.0        | Within range                     |
| 34       | Shallow-water grouper                    | 2.8                | 5.7        | 8.7                | 6.2        | Within range                     |
| 35       | Red snapper (0yr)                        | -                  | -          | -                  | 18.4       | Multi-stanza                     |
| 36       | Red snapper (1-2yr)                      | -                  | -          | -                  | 7.9        | Multi-stanza                     |
| 37       | Red snapper (3+yr)                       | 4.6                | 5.3        | 6.2                | 3.3        |                                  |
| 38       | Vermilion snapper                        | 3.8                | 4.5        | 5.4                | 4.5        | Average Q/B                      |
| 39       | Mutton snapper                           | 4.3                | 5          | 5.8                | 5.8        | Max Q/B                          |
| 40       | Other snapper                            | 3                  | 5.3        | 10.6               | 6.0        | Within range                     |
| 41       | Coastal piscivores                       | 2.7                | 5.8        | 9.3                | 6.5        | Within range                     |
| 42       | Sea trout                                | 3.2                | 6.2        | 9.1                | 7.0        | Within range                     |
| 43       | Oceanic piscivores                       | 1.2                | 6.6        | 24.2               | 8.5        | Within range                     |
| 44       | Benthic piscivores                       | 2.3                | 6.8        | 11                 | 5.0        | Within range                     |
| 45       | Reef piscivores                          | 1.8                | 6.3        | 15.2               | 5.4        | Within range                     |
| 46       | Reef invertebrate feeders                | 2.5                | 11.5       | 64.6               | 5.8        | Within range                     |
| 47       | Demersal coastal<br>invertebrate feeders | 2.1                | 7.1        | 22.4               | 5.9        | Within range                     |
| 48       | Red drum                                 | 4                  | 5          | 6.2                | 5.0        | Average Q/B                      |
| 49       | Benthic coastal invertebrate             | 2.8                | 13.4       | 40.2               | 5.8        | Within range                     |
| 50       | Teeders                                  | 2.2                | 2.0        | 25                 | 25         | M/ithin roman                    |
| 5U<br>54 | rilensii<br>Crov triggorfich             | 2.2                | ∠.0<br>5.0 | 3.3<br>7 0         | 3.5<br>5.0 |                                  |
| 51       |                                          | 3.ð<br>₄ 0         | 5.9<br>0.2 | 1.0<br>22.0        | 5.9<br>0.0 | Average Q/B                      |
| 52       |                                          | 4.ð                | 9.3        | 22.0<br>50.0       | ö.ö        | vvitnin range                    |
| 53       | Reet omnivores                           | 4.2                | 19.8       | 52.3               | 8.4        | vvitnin range                    |

Table 7-Continued. Range of consumption to biomass (Q/B) estimates for each fish functional group as calculated using the empirical equations of Pauly *et al.* (1990), Palomares and Pauly (1989), and Palomares and Pauly (1998). Average Q/B values were input as starting points whereas minimum and maximum Q/B values were used as bounds of reasonable parameters during model balancing. Final Q/B estimates are also shown along with their source. – indicates no data available.

| No | Functional group                 | Q/B <sub>MIN</sub> | Q/BAVERAGE | Q/B <sub>MAX</sub> | Q/B  | Source                        |
|----|----------------------------------|--------------------|------------|--------------------|------|-------------------------------|
| 54 | Surface pelagics                 | 9.4                | 19.1       | 34.1               | 11.7 | Within range                  |
| 55 | Large oceanic<br>planktivores    | 0.6                | 1.3        | 3.7                | 1.3  | Average Q/B                   |
| 56 | Oceanic planktivores             | 4.7                | 38.2       | 83.3               | 8.7  | Within range                  |
| 57 | Sardine-herring-scad             | 4.3                | 10.5       | 30.6               | 10.5 | Average Q/B                   |
| 58 | Menhaden (0yr)                   | -                  | -          | -                  | 42.4 | Multi-stanza                  |
| 59 | Menhaden (1yr)                   | -                  | -          | -                  | 21.8 | Multi-stanza                  |
| 60 | Menhaden (2yr)                   | 5.7                | 10         | 31.4               | 15.4 | Within range                  |
| 61 | Menhaden (3yr)                   | -                  | -          | -                  | 12.7 | Multi-stanza                  |
| 62 | Menhaden (4+yr)                  | -                  | -          | -                  | 11.1 | Multi-stanza                  |
| 63 | Anchovy-silverside-<br>killifish | 9.2                | 18.5       | 40.9               | 15.9 | Within range                  |
| 64 | Mullet                           | 7.4                | 15         | 25.3               | 8.0  | Within range                  |
| 65 | Butterfish                       | 5.6                | 8.9        | 12.5               | 8.1  | Within range                  |
| 66 | Cephalopod                       | -                  | -          | -                  | 13.7 | Chagaris <i>et al.</i> (2015) |
| 67 | Pink shrimp                      | -                  | -          | -                  | 19.2 | Okey and Mahmoudi<br>(2002)   |
| 68 | Brown shrimp                     | -                  | -          | -                  | 19.2 | Okey and Mahmoudi (2002)      |
| 69 | White shrimp                     | -                  | -          | -                  | 19.2 | Okey and Mahmoudi (2002)      |
| 70 | Crab                             | -                  | -          | -                  | 10.5 | Chagaris <i>et al.</i> (2015) |
| 71 | Sessile epifauna                 | -                  | -          | -                  | 9.0  | Okey and Mahmoudi<br>(2002)   |
| 72 | Mobile epifauna                  | -                  | -          | -                  | 16.0 | Chagaris <i>et al.</i> (2015) |
| 73 | Zooplankton                      | -                  | -          | -                  | 74.0 | Chagaris <i>et al.</i> (2015) |
| 74 | Infauna                          | -                  | -          | -                  | 22.0 | Chagaris <i>et al.</i> (2015) |
| 75 | Algae                            | -                  | -          | -                  | -    | -                             |
| 76 | Seagrass                         | -                  | -          | -                  | -    | -                             |
| 77 | Phytoplankton                    | -                  | -          | -                  | -    | -                             |
| 78 | Detritus                         | -                  | -          | -                  | -    | -                             |

| No | Prey \ predator            | 1     | 2     | 3   | 4      | 5     | 6      | 7      | 8     |
|----|----------------------------|-------|-------|-----|--------|-------|--------|--------|-------|
| 1  | Coastal dolphins           |       |       |     |        |       | 0.3    | 0.78   | 1.145 |
| 2  | Offshore dolphins          |       |       |     |        |       | 0.3    | 0.78   |       |
| 3  | Baleen whales              |       |       |     |        |       |        |        |       |
| 4  | Seabird                    |       |       |     | 0.111  |       |        | 0.0002 |       |
| 5  | Sea turtle                 |       |       |     |        |       |        | 1.022  |       |
| 6  | Blacktip shark             |       |       |     |        |       | 0.263  | 3.489  | 1.742 |
| 7  | Dusky shark                |       |       |     |        |       | 0.05   | 0.158  | 0.11  |
| 8  | Sandbar shark              |       |       |     |        |       | 0.005  | 0.021  | 0.158 |
| 9  | Large coastal sharks       |       |       |     |        |       | 0.256  | 2.701  | 0.192 |
| 10 | Large oceanic sharks       |       |       |     |        |       |        | 0.144  | 0.075 |
| 11 | Atlantic sharpnose shark   | 0.12  |       |     |        | 0.57  | 0.115  | 0.836  | 0.437 |
| 12 | Small coastal sharks       | 0.005 |       |     |        | 0.102 | 0.015  | 0.133  | 0.2   |
| 13 | Yellowfin tuna             |       |       |     |        |       | 0.026  | 0.093  | 0.037 |
| 14 | Bluefin tuna               |       |       |     |        |       | 0.001  | 0.01   | 0.034 |
| 15 | Other tunas                |       |       |     |        |       | 0.014  | 0.132  | 0.052 |
| 16 | Billfish                   |       |       |     |        |       |        | 0.193  |       |
| 17 | Swordfish                  |       |       |     |        |       |        | 0.721  |       |
| 18 | Pelagic coastal piscivores | 0.109 | 0.109 | 0.1 | 0.114  | 1.82  | 0.321  | 3.525  | 3.294 |
| 19 | Amberjack                  | 0.138 | 0.138 |     | 0.037  | 0.01  | 0.028  | 0.931  | 0.026 |
| 20 | Cobia                      | 0.01  | 0.01  |     |        |       | 0.121  | 0.005  | 0.006 |
| 21 | King mackerel (0-1yr)      | 0.01  |       |     | 0.001  |       | 0.0004 | 0.005  | 0.004 |
| 22 | King mackerel (1+yr)       | 1.433 | 1.433 |     |        |       | 0.012  | 0.138  | 0.1   |
| 23 | Spanish mackerel (0-1yr)   | 0.01  |       |     | 0.001  |       | 0.002  | 0.056  | 0.041 |
| 24 | Spanish mackerel (1+yr)    | 0.09  | 0.09  |     |        |       | 1.3    | 0.479  | 0.347 |
| 25 | Skates-rays                | 0.166 | 0.166 |     |        | 0.174 | 0.23   | 3.772  | 2.489 |
| 26 | Gag grouper (0-3yr)        |       |       |     | 0.003  |       | 0.014  | 0.107  |       |
| 27 | Gag grouper (3+yr)         |       |       |     |        |       | 0.243  | 0.108  |       |
| 28 | Red grouper (0-3yr)        |       |       |     | 0.003  |       | 0.02   | 0.088  |       |
| 29 | Red grouper (3+yr)         |       |       |     |        |       | 0.112  | 0.138  |       |
| 30 | Yellowedge grouper (0-3yr) |       |       |     |        |       |        | 0.002  |       |
| 31 | Yellowedge grouper (3+yr)  |       |       |     |        |       |        | 0.141  |       |
| 32 | Goliath grouper            |       |       |     | 0.0005 |       | 0.002  | 0.016  |       |
| 33 | Deep-water grouper         |       |       |     |        |       |        | 0.02   |       |
| 34 | Shallow-water grouper      |       |       |     | 0.035  |       | 0.053  | 0.232  |       |
| 35 | Red snapper (0yr)          |       |       |     |        |       | 0.002  |        | 0.002 |
| 36 | Red snapper (1-2yr)        |       |       |     |        |       | 0.002  |        | 0.002 |
| 37 | Red snapper (3+yr)         |       |       |     |        |       | 0.015  |        | 0.13  |
| 38 | Vermilion snapper          |       |       |     |        |       | 0.134  |        | 0.119 |
| 39 | Mutton snapper             |       |       |     |        |       | 0.08   |        | 0.106 |
| 40 | Other snapper              |       |       |     |        |       | 0.03   |        | 0.271 |

| No | Prey \ predator            | 9     | 10    | 11    | 12     | 13    | 14    | 15    | 16    |
|----|----------------------------|-------|-------|-------|--------|-------|-------|-------|-------|
| 1  | Coastal dolphins           | 1.362 |       |       |        |       |       |       |       |
| 2  | Offshore dolphins          |       | 0.99  |       |        |       |       | 0.3   |       |
| 3  | Baleen whales              |       | 0.3   |       |        |       |       |       |       |
| 4  | Seabird                    | 0.899 | 0.543 |       |        |       |       |       |       |
| 5  | Sea turtle                 | 0.281 | 0.543 |       |        |       |       |       | 0.869 |
| 6  | Blacktip shark             | 3.011 | 0.631 |       |        |       |       |       |       |
| 7  | Dusky shark                | 0.058 | 0.193 |       |        |       |       |       |       |
| 8  | Sandbar shark              | 0.032 | 0.055 |       |        |       |       |       |       |
| 9  | Large coastal sharks       | 1.235 | 0.61  |       |        | 0.564 |       |       |       |
| 10 | Large oceanic sharks       | 1.078 | 1.229 |       |        |       |       |       |       |
| 11 | Atlantic sharpnose shark   | 0.508 | 0.695 | 0.626 | 1.043  |       |       |       |       |
| 12 | Small coastal sharks       | 0.025 | 0.117 | 0.011 | 0.155  |       | 0.164 |       |       |
| 13 | Yellowfin tuna             | 0.072 | 0.029 |       |        | 0.402 | 0.005 | 0.057 | 0.015 |
| 14 | Bluefin tuna               | 0.017 | 0.012 |       |        | 0.016 | 0.005 | 0.013 | 0.014 |
| 15 | Other tunas                | 0.1   | 0.085 |       |        | 0.776 | 0.007 | 0.079 | 1.036 |
| 16 | Billfish                   | 0.019 | 0.014 |       |        | 0.214 |       | 0.018 | 0.02  |
| 17 | Swordfish                  | 0.112 | 0.145 |       |        | 0.162 |       | 0.058 | 0.161 |
| 18 | Pelagic coastal piscivores | 1.711 | 1.064 | 0.3   | 1.631  | 5.684 | 0.599 | 0.262 | 4.741 |
| 19 | Amberjack                  | 0.153 | 0.089 | 0.051 | 0.032  | 0.241 | 0.003 | 0.356 | 0.145 |
| 20 | Cobia                      | 0.008 | 0.002 | 0.026 | 0.011  | 0.006 | 0.001 | 0.007 | 0.006 |
| 21 | King mackerel (0-1yr)      | 0.009 | 0.004 | 0.01  | 0.0004 | 0.016 | 0.002 | 0.002 | 0.015 |
| 22 | King mackerel (1+yr)       | 0.264 | 0.099 | 0.025 | 0.011  | 0.434 | 0.048 | 0.065 | 0.422 |
| 23 | Spanish mackerel (0-1yr)   | 0.02  | 0.04  | 0.016 | 0.014  | 0.176 | 0.019 | 0.026 | 0.171 |
| 24 | Spanish mackerel (1+yr)    | 1.719 | 0.343 | 0.173 | 0.142  | 1.503 | 0.166 | 0.225 | 1.464 |
| 25 | Skates-rays                | 2.596 | 0.863 | 0.197 | 1.544  |       | 0.233 |       |       |
| 26 | Gag grouper (0-3yr)        | 0.011 |       |       |        | 0.037 | 0.009 | 0.048 | 0.095 |
| 27 | Gag grouper (3+yr)         | 0.111 |       |       |        | 0.042 | 0.01  | 0.054 | 0.107 |
| 28 | Red grouper (0-3yr)        | 0.09  |       |       |        | 0.031 | 0.008 | 0.04  | 0.08  |
| 29 | Red grouper (3+yr)         | 0.142 |       |       |        | 0.053 | 0.013 | 0.069 | 0.138 |
| 30 | Yellowedge grouper (0-3yr) | 0.002 |       |       |        |       | 0.012 | 0.006 | 0.012 |
| 31 | Yellowedge grouper (3+yr)  | 0.146 |       |       |        | 0.055 | 0.014 | 0.07  | 0.141 |
| 32 | Goliath grouper            | 0.002 |       |       |        | 0.006 | 0.002 | 0.008 | 0.016 |
| 33 | Deep-water grouper         | 0.02  |       |       |        | 0.008 | 0.002 | 0.01  | 0.02  |
| 34 | Shallow-water grouper      | 0.114 |       |       | 0.155  | 0.086 | 0.021 | 0.111 | 0.223 |
| 35 | Red snapper (0yr)          | 0.001 |       | 0.003 |        | 0.001 |       | 0.001 | 0.001 |
| 36 | Red snapper (1-2yr)        | 0.001 |       | 0.003 |        | 0.001 |       | 0.001 | 0.001 |
| 37 | Red snapper (3+yr)         | 0.112 | 0.008 | 0.024 |        | 0.069 |       | 0.091 | 0.099 |
| 38 | Vermilion snapper          | 0.103 | 0.007 | 0.223 |        | 0.063 |       | 0.084 | 0.091 |
| 39 | Mutton snapper             | 0.092 | 0.006 | 0.06  |        | 0.056 |       | 0.075 | 0.081 |
| 40 | Other snapper              | 0.234 | 0.016 | 0.107 |        | 0.144 |       | 0.191 | 0.206 |

| No | Prey \ predator            | 17    | 18    | 19    | 20    | 22     | 23 | 24    | 25     |
|----|----------------------------|-------|-------|-------|-------|--------|----|-------|--------|
| 1  | Coastal dolphins           |       |       |       |       |        |    |       |        |
| 2  | Offshore dolphins          |       |       |       |       |        |    |       |        |
| 3  | Baleen whales              |       |       |       |       |        |    |       |        |
| 4  | Seabird                    |       |       |       |       |        |    |       |        |
| 5  | Sea turtle                 |       |       |       |       |        |    |       |        |
| 6  | Blacktip shark             |       |       |       |       |        |    |       |        |
| 7  | Dusky shark                |       |       |       |       |        |    |       |        |
| 8  | Sandbar shark              |       |       |       |       |        |    |       |        |
| 9  | Large coastal sharks       |       |       |       |       |        |    |       |        |
| 10 | Large oceanic sharks       |       |       |       |       |        |    |       |        |
| 11 | Atlantic sharpnose shark   |       |       |       |       |        |    |       |        |
| 12 | Small coastal sharks       | 0.019 |       |       | 0.234 |        |    |       |        |
| 13 | Yellowfin tuna             | 0.076 | 0.01  |       | 0.075 | 0.015  |    |       |        |
| 14 | Bluefin tuna               | 0.01  |       |       | 0.01  | 0.001  |    |       |        |
| 15 | Other tunas                | 0.103 | 0.011 |       | 0.106 | 0.018  |    |       |        |
| 16 | Billfish                   |       | 0.011 |       |       |        |    |       |        |
| 17 | Swordfish                  |       |       |       |       |        |    |       |        |
| 18 | Pelagic coastal piscivores | 2.973 | 0.071 | 0.25  | 2.625 | 0.122  |    | 0.128 | 0.031  |
| 19 | Amberjack                  | 0.023 | 0.121 | 0.037 | 0.12  | 0.024  |    | 0.148 | 0.032  |
| 20 | Cobia                      | 0.01  | 0.044 | 0.009 | 0.022 | 0.022  |    | 0.11  | 0.04   |
| 21 | King mackerel (0-1yr)      | 0.003 | 0.009 | 0.007 | 0.001 | 0.015  |    | 0.01  | 0.006  |
| 22 | King mackerel (1+yr)       | 0.09  | 1.207 | 0.186 | 0.021 |        |    | 0.865 |        |
| 23 | Spanish mackerel (0-1yr)   | 0.036 | 0.01  | 0.075 | 0.13  | 0.001  |    | 0.001 | 0.0003 |
| 24 | Spanish mackerel (1+yr)    | 0.311 | 0.111 | 0.643 | 1.114 | 0.014  |    |       |        |
| 25 | Skates-rays                | 0.934 |       | 2.077 | 2.701 |        |    |       | 0.2    |
| 26 | Gag grouper (0-3yr)        |       | 0.012 | 0.012 | 0.015 | 0.003  |    |       |        |
| 27 | Gag grouper (3+yr)         |       | 0.012 | 0.125 | 0.172 | 0.026  |    |       |        |
| 28 | Red grouper (0-3yr)        |       | 0.01  | 0.102 | 0.128 | 0.021  |    |       |        |
| 29 | Red grouper (3+yr)         |       | 0.158 | 0.16  | 0.22  | 0.034  |    |       |        |
| 30 | Yellowedge grouper (0-3yr) |       |       | 0.002 |       |        |    |       |        |
| 31 | Yellowedge grouper (3+yr)  |       | 0.162 | 0.164 | 0.226 |        |    |       |        |
| 32 | Goliath grouper            |       | 0.002 | 0.002 | 0.016 | 0.0004 |    |       |        |
| 33 | Deep-water grouper         |       | 0.022 | 0.023 | 0.031 |        |    |       |        |
| 34 | Shallow-water grouper      |       | 0.027 | 0.27  | 0.357 | 0.017  |    |       |        |
| 35 | Red snapper (0yr)          |       | 0.001 | 0.003 | 0.015 | 0.026  |    |       | 0.002  |
| 36 | Red snapper (1-2yr)        |       | 0.001 | 0.003 | 0.015 | 0.026  |    |       | 0.002  |
| 37 | Red snapper (3+yr)         |       | 0.011 | 0.023 | 0.12  | 0.01   |    |       | 0.019  |
| 38 | Vermilion snapper          |       | 0.051 | 0.223 |       | 0.138  |    |       | 0.178  |
| 39 | Mutton snapper             |       | 0.044 | 0.185 |       | 0.011  |    |       | 0.016  |
| 40 | Other snapper              |       | 0.012 | 0.473 |       | 0.029  |    |       | 0.04   |

| No | Prey \ predator            | 26    | 27    | 28    | 29    | 30    | 31     | 32    | 33    |
|----|----------------------------|-------|-------|-------|-------|-------|--------|-------|-------|
| 1  | Coastal dolphins           |       |       |       |       |       |        |       |       |
| 2  | Offshore dolphins          |       |       |       |       |       |        |       |       |
| 3  | Baleen whales              |       |       |       |       |       |        |       |       |
| 4  | Seabird                    |       |       |       |       |       |        |       |       |
| 5  | Sea turtle                 |       |       |       |       |       |        | 3.753 |       |
| 6  | Blacktip shark             |       |       |       |       |       |        |       |       |
| 7  | Dusky shark                |       |       |       |       |       |        |       |       |
| 8  | Sandbar shark              |       |       |       |       |       |        |       |       |
| 9  | Large coastal sharks       |       |       |       |       |       |        |       |       |
| 10 | Large oceanic sharks       |       |       |       |       |       |        |       |       |
| 11 | Atlantic sharpnose shark   |       | 0.059 |       | 0.145 |       | 0.016  | 0.018 |       |
| 12 | Small coastal sharks       |       | 0.105 |       | 0.026 |       | 0.028  | 0.031 |       |
| 13 | Yellowfin tuna             |       | 0.095 |       | 0.04  |       | 0.001  | 0.015 |       |
| 14 | Bluefin tuna               |       | 0.018 |       | 0.037 |       | 0      | 0.014 |       |
| 15 | Other tunas                |       | 0.133 |       | 0.056 |       | 0.003  | 0.021 |       |
| 16 | Billfish                   |       |       |       |       |       |        |       |       |
| 17 | Swordfish                  |       |       |       |       |       |        |       |       |
| 18 | Pelagic coastal piscivores |       | 1.144 |       | 0.714 |       | 0.043  | 0.048 | 0.39  |
| 19 | Amberjack                  |       | 0.049 |       | 0.121 |       | 0.001  | 0.001 | 0.066 |
| 20 | Cobia                      |       | 0.046 |       | 0.051 |       | 0.005  | 0.005 | 0.062 |
| 21 | King mackerel (0-1yr)      |       | 0.009 |       | 0.004 |       |        | 0.002 |       |
| 22 | King mackerel (1+yr)       |       | 0.258 |       | 0.219 |       |        | 0.047 |       |
| 23 | Spanish mackerel (0-1yr)   |       | 0.105 |       | 0.044 |       |        | 0.005 |       |
| 24 | Spanish mackerel (1+yr)    |       | 0.896 |       | 0.377 |       |        | 0.044 |       |
| 25 | Skates-rays                |       | 3.283 |       | 0.517 |       | 0.31   | 4.75  |       |
| 26 | Gag grouper (0-3yr)        | 0.035 | 0.023 | 0.093 | 0.02  | 0.058 | 0.009  | 0.023 | 0.11  |
| 27 | Gag grouper (3+yr)         |       | 0.257 |       | 0.226 |       | 0.009  | 0.026 |       |
| 28 | Red grouper (0-3yr)        | 0.025 | 0.019 | 0.07  | 0.017 | 0.044 | 0.017  | 0.018 | 0.092 |
| 29 | Red grouper (3+yr)         |       | 0.329 |       | 0.29  |       | 0.017  | 0.031 |       |
| 30 | Yellowedge grouper (0-3yr) | 0.007 | 0.003 | 0.017 | 0.003 | 0.1   | 0.003  |       |       |
| 31 | Yellowedge grouper (3+yr)  |       |       |       |       |       | 0.035  |       | 0.01  |
| 32 | Goliath grouper            | 0.032 | 0.004 | 0.066 | 0.003 | 0.033 |        | 0.01  |       |
| 33 | Deep-water grouper         |       |       |       |       |       | 0.002  |       | 0.023 |
| 34 | Shallow-water grouper      | 0.092 | 0.053 | 0.205 | 0.047 | 0.11  | 0.052  | 0.059 | 0.123 |
| 35 | Red snapper (0yr)          |       |       |       | 0.01  |       | 0.0004 |       |       |
| 36 | Red snapper (1-2yr)        |       |       |       | 0.01  |       | 0.0004 |       |       |
| 37 | Red snapper (3+yr)         |       |       |       | 0.077 |       | 0.034  | 0.491 |       |
| 38 | Vermilion snapper          | 0.019 | 3.373 | 0.075 | 0.704 | 0.056 | 0.052  | 0.451 | 0.496 |
| 39 | Mutton snapper             | 0.017 | 0.119 | 0.067 | 0.063 | 0.05  |        | 0.401 | 0.16  |
| 40 | Other snapper              | 1.912 | 0.338 | 0.265 | 0.16  | 0.718 | 0.285  | 1.025 | 0.409 |

| No | Prey \ predator            | 34    | 35    | 36    | 37    | 38    | 39    | 40    | 41     |
|----|----------------------------|-------|-------|-------|-------|-------|-------|-------|--------|
| 1  | Coastal dolphins           |       |       |       |       |       |       |       |        |
| 2  | Offshore dolphins          |       |       |       |       |       |       |       |        |
| 3  | Baleen whales              |       |       |       |       |       |       |       |        |
| 4  | Seabird                    |       |       |       |       |       |       |       |        |
| 5  | Sea turtle                 |       |       |       |       |       |       |       |        |
| 6  | Blacktip shark             |       |       |       |       |       |       |       |        |
| 7  | Dusky shark                |       |       |       |       |       |       |       |        |
| 8  | Sandbar shark              |       |       |       |       |       |       |       |        |
| 9  | Large coastal sharks       |       |       |       |       |       |       |       |        |
| 10 | Large oceanic sharks       |       |       |       |       |       |       |       |        |
| 11 | Atlantic sharpnose shark   |       |       |       |       |       |       |       |        |
| 12 | Small coastal sharks       |       |       |       |       |       |       |       |        |
| 13 | Yellowfin tuna             |       |       |       |       |       |       |       |        |
| 14 | Bluefin tuna               |       |       |       |       |       |       |       |        |
| 15 | Other tunas                |       |       |       |       |       |       |       |        |
| 16 | Billfish                   |       |       |       |       |       |       |       |        |
| 17 | Swordfish                  |       |       |       |       |       |       |       |        |
| 18 | Pelagic coastal piscivores | 0.594 | 2.613 | 0.701 |       | 0.033 |       |       | 0.05   |
| 19 | Amberjack                  | 0.101 | 0.05  | 0.05  |       | 0.052 |       |       | 0.012  |
| 20 | Cobia                      | 0.063 |       |       |       | 0.049 |       |       |        |
| 21 | King mackerel (0-1yr)      |       |       |       |       |       |       |       |        |
| 22 | King mackerel (1+yr)       |       |       |       |       |       |       |       |        |
| 23 | Spanish mackerel (0-1yr)   |       |       |       |       |       |       |       | 0.0004 |
| 24 | Spanish mackerel (1+yr)    |       |       |       |       |       |       |       |        |
| 25 | Skates-rays                |       |       |       |       |       |       |       |        |
| 26 | Gag grouper (0-3yr)        | 0.039 | 0.205 | 0.02  | 0.026 |       | 0.017 | 0.029 |        |
| 27 | Gag grouper (3+yr)         |       |       |       |       |       |       |       |        |
| 28 | Red grouper (0-3yr)        | 0.032 | 0.167 | 0.017 | 0.022 |       | 0.145 | 0.024 |        |
| 29 | Red grouper (3+yr)         |       |       |       |       |       |       |       |        |
| 30 | Yellowedge grouper (0-3yr) | 0.005 | 0.003 |       |       |       | 0.002 |       |        |
| 31 | Yellowedge grouper (3+yr)  |       |       |       |       |       |       |       |        |
| 32 | Goliath grouper            | 0.006 | 0.031 | 0.003 | 0.004 |       | 0.025 | 0.002 |        |
| 33 | Deep-water grouper         |       |       |       | 0.053 |       |       | 0.005 |        |
| 34 | Shallow-water grouper      | 0.12  | 0.221 | 0.022 | 0.029 |       | 0.194 | 0.032 |        |
| 35 | Red snapper (0yr)          | 0.005 | 0.116 | 0.116 |       |       | 0.003 |       |        |
| 36 | Red snapper (1-2yr)        | 0.005 | 1.165 | 1.46  |       |       | 0.003 |       |        |
| 37 | Red snapper (3+yr)         | 0.431 |       |       | 0.009 |       |       |       |        |
| 38 | Vermilion snapper          | 0.515 | 0.026 | 0.109 | 0.084 | 0.002 | 0.264 |       |        |
| 39 | Mutton snapper             | 0.352 | 0.243 | 0.033 | 0.074 |       | 0.02  |       |        |
| 40 | Other snapper              | 0.15  | 0.621 | 0.221 | 0.19  |       | 0.6   |       | 0.012  |

42 43 44 45 47 50 No Prey \ predator 46 57 1 Coastal dolphins 2 Offshore dolphins 3 Baleen whales 4 Seabird 5 Sea turtle 6 Blacktip shark 7 Dusky shark 8 Sandbar shark 9 Large coastal sharks 10 Large oceanic sharks 11 Atlantic sharpnose shark 12 Small coastal sharks 0.008 0.093 Yellowfin tuna 0.01 13 14 Bluefin tuna 0.001 15 Other tunas 0.02 Billfish 16 17 Swordfish 0.001 18 Pelagic coastal piscivores 0.175 0.081 0.111 0.815 0.056 0.001 0.258 Amberjack 0.017 0.044 19 0.032 0.049 0.067 0.006 0.026 20 Cobia 0.012 0.063 0.041 21 King mackerel (0-1yr) 0.004 0.002 King mackerel (1+yr) 22 0.116 0.018 23 Spanish mackerel (0-1yr) 0.0001 0.0005 0.024 24 Spanish mackerel (1+yr) 0.403 0.064 Skates-rays 25 26 Gag grouper (0-3yr) 0.073 27 Gag grouper (3+yr) 0.082 28 Red grouper (0-3yr) 0.061 29 Red grouper (3+yr) 0.105 Yellowedge grouper (0-3yr) 30 0.009 31 Yellowedge grouper (3+yr) 0.107 32 Goliath grouper 0.012 33 Deep-water grouper 0.015 0.17 34 Shallow-water grouper Red snapper (0yr) 0.005 35 0.005 36 Red snapper (1-2yr) 37 Red snapper (3+yr) 38 Vermilion snapper 1.025 0.056 0.096 39 Mutton snapper 0.043 0.05 0.016 40 0.014 0.034 Other snapper 0.029 0.197

| No | Prey \ predator                      | 1      | 2     | 3   | 4      | 5      | 6      | 7      |
|----|--------------------------------------|--------|-------|-----|--------|--------|--------|--------|
| 41 | Coastal piscivores                   | 2.618  |       |     | 1.972  | 0.025  | 0.222  | 1.346  |
| 42 | Sea trout                            | 0.444  |       |     | 0.229  | 0.079  | 1.48   | 0.975  |
| 43 | Oceanic piscivores                   | 0.145  | 0.255 |     | 0.197  |        | 1.225  | 0.934  |
| 44 | Benthic piscivores                   | 0.109  |       |     | 0.051  | 1.905  | 0.211  | 0.101  |
| 45 | Reef piscivores                      |        |       |     |        |        | 0.12   | 0.961  |
| 46 | Reef invertebrate feeders            | 1.078  |       |     | 0.507  | 1.944  | 1.251  | 3.046  |
|    | Demersal coastal invertebrate        |        |       |     |        |        |        |        |
| 47 | feeders                              | 2.813  |       |     | 0.954  | 2.112  | 2.286  | 1.354  |
| 48 | Red drum                             | 0.122  |       |     |        |        | 1.565  |        |
| 49 | Benthic coastal invertebrate feeders | 1.067  |       |     | 0.526  | 3.952  | 2.237  | 1.459  |
| 50 | Tilefish                             |        |       |     |        |        |        |        |
| 51 | Gray triggerfish                     | 0.03   |       |     |        |        | 0.164  | 1.095  |
| 52 | Coastal omnivores                    | 0.242  |       |     | 0.302  |        | 0.277  | 1.905  |
| 53 | Reef omnivores                       | 0.231  |       |     | 0.112  |        | 0.103  | 1.052  |
| 54 | Surface pelagics                     | 5.5    | 6     |     | 2.456  |        | 0.863  | 0.948  |
| 55 | Large oceanic planktivores           |        |       |     |        |        |        |        |
| 56 | Oceanic planktivores                 | 2.173  | 0.55  | 0.5 | 0.226  | 1.863  | 0.689  | 0.056  |
| 57 | Sardine-herring-scad                 | 8.417  | 6.5   | 0.2 | 8.343  | 2.133  | 6.409  | 3.503  |
| 58 | Menhaden (0yr)                       |        |       |     | 4.48   |        |        |        |
| 59 | Menhaden (1yr)                       | 4.56   |       |     | 5.033  | 0.24   | 6.912  | 1.622  |
| 60 | Menhaden (2yr)                       | 5.74   |       |     | 3.103  | 0.103  | 4.912  | 0.697  |
| 61 | Menhaden (3yr)                       | 3.514  |       |     | 2.374  | 0.005  | 2.292  | 0.036  |
| 62 | Menhaden (4yr)                       | 0.005  |       |     | 0.023  | 0.0004 | 0.908  | 0.003  |
| 63 | Anchovy-silverside-killifish         | 8.871  | 5     | 0.2 | 8.112  | 2.215  | 5.027  | 2.277  |
| 64 | Mullet                               | 4.759  |       |     | 1.408  | 1.94   | 1.87   | 2.294  |
| 65 | Butterfish                           | 3.034  | 2.934 | 2   | 2.067  | 0.162  | 1.463  | 0.996  |
| 66 | Cephalopod                           | 12.188 | 56.7  | 42  | 11.959 | 3.633  | 6.676  | 4.393  |
| 67 | Pink shrimp                          | 2.021  |       |     | 1.667  | 0.047  | 1.594  | 2.922  |
| 68 | Brown shrimp                         | 0.103  |       |     | 0.242  | 0.775  | 1.789  | 1.495  |
| 69 | White shrimp                         | 3.449  |       |     | 2.114  | 1.163  | 1.235  | 1.579  |
| 70 | Crab                                 | 2.149  |       |     | 2.203  | 23.622 | 1.212  | 1.44   |
| 71 | Sessile epifauna                     |        |       |     | 3.723  | 28.829 |        | 1.515  |
| 72 | Mobile epifauna                      | 2.66   |       | 10  | 3.671  | 6.813  | 8.37   | 2.477  |
| 73 | Zooplankton                          | 2.806  | 13    | 45  | 3.325  | 2.808  | 0.81   | 1.329  |
| 74 | Infauna                              | 2.85   |       |     | 4.589  | 3.395  | 0.441  | 1.822  |
| 75 | Algae                                | 2.066  |       |     |        | 2.157  | 1.159  |        |
| 76 | Seagrass                             |        |       |     | 1.938  | 1.849  | 1.159  | 0.923  |
| 77 | Phytoplankton                        |        |       |     |        |        |        |        |
| 78 | Detritus                             | 8.742  | 0.5   |     | 10.628 |        | 8.961  | 2.444  |
| 79 | Import                               | 3.359  | 6.6   |     | 11.184 | 3.539  | 20.037 | 30.032 |

| No | Prey \ predator                      | 8      | 9      | 10     | 11    | 12     | 13     | 14     |
|----|--------------------------------------|--------|--------|--------|-------|--------|--------|--------|
| 41 | Coastal piscivores                   | 0.015  | 0.949  | 0.549  | 3.083 | 1.588  |        | 0.002  |
| 42 | Sea trout                            | 1.392  | 1.115  |        | 1.887 | 1.748  |        | 0.165  |
| 43 | Oceanic piscivores                   | 1.255  | 0.937  | 1.505  | 1.843 | 1.584  | 0.851  | 0.163  |
| 44 | Benthic piscivores                   | 2.36   | 0.148  | 0.733  | 0.144 | 0.172  | 0.622  | 0.169  |
| 45 | Reef piscivores                      | 1.276  | 1.373  | 0.561  | 1.845 | 1.585  | 0.599  | 0.162  |
| 46 | Reef invertebrate feeders            | 2.637  | 3.51   | 0.621  | 3.351 | 0.847  | 1.267  | 0.325  |
|    | Demersal coastal invertebrate        |        |        |        |       |        |        |        |
| 47 | feeders                              | 5.385  | 2.558  | 0.926  | 4.383 | 4.571  | 1.189  | 0.379  |
| 48 | Red drum                             |        | 0.035  |        | 1.262 |        |        |        |
| 49 | Benthic coastal invertebrate feeders | 6.684  | 2.138  | 1.183  | 3.971 | 2.469  | 0.787  | 2.261  |
| 50 | Tilefish                             |        |        | 0.055  |       |        | 0.554  |        |
| 51 | Gray triggerfish                     | 0.15   | 0.124  | 0.117  |       |        | 0.118  | 0.02   |
| 52 | Coastal omnivores                    | 2.469  | 1.986  | 1.507  | 2.602 | 1.81   | 2.395  | 0.319  |
| 53 | Reef omnivores                       | 1.367  | 1.098  | 0.599  |       | 1.798  | 0.751  | 0.017  |
| 54 | Surface pelagics                     | 1.238  | 0.998  | 1.648  |       |        | 2.329  | 0.226  |
| 55 | Large oceanic planktivores           |        | 0.162  | 0.134  |       |        | 0.603  |        |
| 56 | Oceanic planktivores                 | 0.063  | 1.126  | 0.752  |       |        | 9.856  | 0.167  |
| 57 | Sardine-herring-scad                 | 2.812  | 2.287  | 2.34   | 6.905 | 5.14   | 2.047  | 0.97   |
| 58 | Menhaden (0yr)                       |        |        |        |       |        |        |        |
| 59 | Menhaden (1yr)                       | 2.394  | 1.205  |        | 3.371 | 2.292  |        |        |
| 60 | Menhaden (2yr)                       | 1.029  | 3.018  | 0.987  | 3.91  | 0.986  | 0.971  | 0.286  |
| 61 | Menhaden (3yr)                       | 0.053  | 0.279  | 0.051  | 2.683 | 0.051  | 0.05   | 0.015  |
| 62 | Menhaden (4yr)                       | 0.004  | 0.022  | 0.004  | 0.006 | 0.004  | 0.004  | 0.001  |
| 63 | Anchovy-silverside-killifish         | 3.634  | 2.807  | 1.214  | 4.494 | 3.481  | 0.998  | 0.242  |
| 64 | Mullet                               | 0.109  | 1.36   | 0.611  | 5.148 | 1.747  | 0.113  | 0.173  |
| 65 | Butterfish                           | 1.296  | 1.025  | 0.584  | 0.429 | 1.737  | 0.637  | 0.279  |
| 66 | Cephalopod                           | 7.907  | 6.9    | 11.831 | 6.812 | 2.299  | 3.971  | 0.413  |
| 67 | Pink shrimp                          | 0.043  | 0.032  | 0.014  | 0.169 | 0.057  | 0.015  | 0.004  |
| 68 | Brown shrimp                         | 0.713  | 0.531  | 0.236  | 0.815 | 0.35   | 0.256  | 0.071  |
| 69 | White shrimp                         | 1.071  | 0.797  | 0.354  | 2.83  | 2.026  | 0.385  | 0.106  |
| 70 | Crab                                 | 4.608  | 1.128  | 0.601  | 3.199 | 24.218 | 0.748  | 0.179  |
| 71 | Sessile epifauna                     | 1.512  | 1.468  | 1.366  | 3.348 | 2.592  | 0.667  | 0.299  |
| 72 | Mobile epifauna                      | 6.342  | 2.542  | 1.173  | 7.042 | 7.817  | 1.603  | 0.257  |
| 73 | Zooplankton                          | 1.856  | 0.702  | 1.091  | 3.734 | 3.279  | 1.181  | 0.237  |
| 74 | Infauna                              | 1.988  | 1.789  | 1.209  | 6.124 | 4.985  | 1.159  | 0.257  |
| 75 | Algae                                | 1.194  | 0.902  | 0.55   | 1.741 | 1.671  | 0.551  | 0.16   |
| 76 | Seagrass                             | 1.195  | 0.917  | 0.543  | 1.746 | 2.538  | 0.536  | 0.162  |
| 77 | Phytoplankton                        |        |        |        |       |        |        |        |
| 78 | Detritus                             | 2.859  | 5.242  | 5.525  | 7.475 | 6.783  | 1.37   | 0.108  |
| 79 | Import                               | 20.018 | 30.365 | 50.071 | 1.766 | 3.08   | 49.983 | 90.065 |

| No | Prey \ predator                       | 15     | 16     | 17     | 18     | 19    | 20    | 21     |
|----|---------------------------------------|--------|--------|--------|--------|-------|-------|--------|
| 41 | Coastal piscivores                    | 0.019  | 0.883  |        | 1.028  |       | 0.054 |        |
| 42 | Sea trout                             | 0.788  | 0.916  |        | 1.066  |       | 1.335 |        |
| 43 | Oceanic piscivores                    | 0.816  | 1.35   | 2.498  | 1.054  |       | 1.249 |        |
| 44 | Benthic piscivores                    | 0.185  | 1.198  |        | 0.013  | 1.763 | 2.301 | 0.146  |
| 45 | Reef piscivores                       | 0.743  | 0.904  | 2.916  | 0.104  |       |       |        |
| 46 | Reef invertebrate feeders             | 1.648  | 2.428  | 1.11   | 1.277  | 5.645 | 3.203 | 0.181  |
| 47 | Demersal coastal invertebrate feeders | 1.561  | 1.654  | 1.994  | 0.562  | 4.736 | 7.233 | 2.554  |
| 48 | Red drum                              |        |        |        | 0.11   |       |       |        |
| 49 | Benthic coastal invertebrate feeders  | 0.984  | 1.821  | 1.748  | 1.3    | 4.274 | 9.782 | 0.346  |
| 50 | Tilefish                              |        |        |        |        |       |       |        |
| 51 | Gray triggerfish                      | 0.864  | 0.128  | 0.131  | 0.124  | 0.255 | 1.371 |        |
| 52 | Coastal omnivores                     | 1.931  | 1.902  | 1.973  | 1.078  | 2.51  | 3.315 | 4.527  |
| 53 | Reef omnivores                        | 0.895  | 1.003  | 1.201  | 0.134  | 0.197 | 1.708 |        |
| 54 | Surface pelagics                      | 3.91   | 1.19   | 1      | 4.996  | 0.44  |       |        |
| 55 | Large oceanic planktivores            | 0.741  | 0.9    |        | 0.012  |       |       |        |
| 56 | Oceanic planktivores                  | 2.183  | 0.931  | 2.059  | 0.172  | 2.125 |       | 0.679  |
| 57 | Sardine-herring-scad                  | 6.534  | 2.116  | 1.825  | 7.728  | 24.84 | 6.531 | 7.458  |
| 58 | Menhaden (0yr)                        |        |        |        |        |       |       |        |
| 59 | Menhaden (1yr)                        | 0.422  |        |        | 3.34   | 0.933 | 1.747 | 15.119 |
| 60 | Menhaden (2yr)                        | 0.181  | 1.54   | 1.213  | 4.006  | 0.401 | 1.051 | 10.491 |
| 61 | Menhaden (3yr)                        | 0.009  | 0.074  | 0.063  | 2.022  | 0.207 | 0.388 | 7.78   |
| 62 | Menhaden (4yr)                        | 0.001  | 0.006  | 0.005  | 0.003  | 0.002 | 0.003 | 5.015  |
| 63 | Anchovy-silverside-killifish          | 6.514  | 1.95   | 1.418  | 4.835  | 9.306 | 3.969 | 13.43  |
| 64 | Mullet                                | 0.842  | 1.201  |        | 1.212  | 4.719 | 1.557 | 1.585  |
| 65 | Butterfish                            | 1.432  | 1.028  | 1.154  | 1.66   | 0.141 | 1.6   | 3.25   |
| 66 | Cephalopod                            | 2.226  | 4.208  | 13.256 | 8.848  | 6.414 | 1.921 | 7.221  |
| 67 | Pink shrimp                           | 0.032  | 0.021  | 0.024  | 0.039  | 0.058 | 0.123 | 0.102  |
| 68 | Brown shrimp                          | 0.539  | 0.356  | 0.407  | 0.644  | 0.969 | 2.042 | 0.17   |
| 69 | White shrimp                          | 0.809  | 0.534  | 0.611  | 0.966  | 1.455 | 3.065 | 4.048  |
| 70 | Crab                                  | 0.791  | 0.907  | 0.995  | 1.308  | 2.108 | 20.17 |        |
| 71 | Sessile epifauna                      | 0.97   | 1.198  |        | 2.407  | 2.02  | 2.003 |        |
| 72 | Mobile epifauna                       | 1.77   | 1.638  | 1.476  | 3.152  | 2.593 | 6.536 | 0.032  |
| 73 | Zooplankton                           | 3.265  | 1.109  | 3.153  | 6.229  | 7.875 | 2.597 | 8.696  |
| 74 | Infauna                               | 1.584  | 0.634  | 0.77   | 3.86   | 4.861 | 2.276 |        |
| 75 | Algae                                 | 0.721  | 0.869  |        | 1.2    |       |       |        |
| 76 | Seagrass                              |        | 0.869  | 0.907  | 1.033  | 2.272 |       |        |
| 77 | Phytoplankton                         |        |        |        | 1.513  |       |       |        |
| 78 | Detritus                              | 1.75   | 2.193  | 1.538  | 8.694  | 1.831 | 2.378 | 6.3    |
| 79 | Import                                | 50.052 | 49.958 | 49.949 | 20.098 |       |       | 0.884  |

| No | Prey \ predator                       | 22     | 23     | 24     | 25     | 26    | 27     | 28     |
|----|---------------------------------------|--------|--------|--------|--------|-------|--------|--------|
| 41 | Coastal piscivores                    | 0.056  | 0.293  | 0.351  | 0.017  | 1.613 |        | 0.101  |
| 42 | Sea trout                             | 0.239  | 0.175  | 0.263  | 0.019  |       |        |        |
| 43 | Oceanic piscivores                    | 0.2    |        | 0.186  |        |       |        |        |
| 44 | Benthic piscivores                    | 0.074  |        | 0.058  | 0.159  | 1.855 | 0.324  | 0.537  |
| 45 | Reef piscivores                       | 0.173  |        |        |        |       |        |        |
| 46 | Reef invertebrate feeders             | 1.407  | 0.241  | 1.628  | 0.337  | 5.492 | 5.882  | 10.004 |
| 47 | Demersal coastal invertebrate feeders | 0.79   | 1.56   | 0.885  | 0.501  | 5.66  | 5.816  | 3.456  |
| 48 | Red drum                              |        |        |        |        |       |        |        |
| 49 | Benthic coastal invertebrate feeders  | 2.442  | 0.399  | 6.771  | 1.094  | 18.22 | 4.175  | 6.776  |
| 50 | Tilefish                              | 0.007  |        |        |        |       |        |        |
| 51 | Gray triggerfish                      | 0.171  |        |        |        |       |        |        |
| 52 | Coastal omnivores                     | 0.222  | 3.799  | 0.499  | 0.203  | 4.022 | 5.818  | 3.99   |
| 53 | Reef omnivores                        | 0.168  |        | 0.321  | 0.202  | 4.296 | 1.262  | 2.572  |
| 54 | Surface pelagics                      | 2.832  |        | 5.871  | 0.043  |       |        |        |
| 55 | Large oceanic planktivores            |        |        |        |        |       |        |        |
| 56 | Oceanic planktivores                  |        |        |        | 0.019  |       |        |        |
| 57 | Sardine-herring-scad                  | 10.76  | 4.37   | 13.675 | 3.204  | 5.821 | 18.267 | 8.492  |
| 58 | Menhaden (0yr)                        |        |        |        |        |       |        |        |
| 59 | Menhaden (1yr)                        | 6.51   | 14.314 | 8.21   |        | 2.823 | 3.88   |        |
| 60 | Menhaden (2yr)                        | 7.733  | 11.214 | 5.56   |        | 1.214 | 3.668  |        |
| 61 | Menhaden (3yr)                        | 5.278  | 9.863  | 4.924  |        | 0.063 | 1.625  |        |
| 62 | Menhaden (4yr)                        | 6.7    | 4.514  | 3.385  |        | 0.005 | 0.4    |        |
| 63 | Anchovy-silverside-killifish          | 7.826  | 18.965 | 15.224 | 3.293  | 5.339 |        | 1.876  |
| 64 | Mullet                                | 0.408  | 0.214  | 1.563  | 0.2    |       | 3.338  |        |
| 65 | Butterfish                            | 3.654  | 4.524  | 2.303  | 0.02   |       |        |        |
| 66 | Cephalopod                            | 12.963 | 1.597  | 9.951  | 5.648  | 3.709 | 4.07   | 2.933  |
| 67 | Pink shrimp                           | 1.05   | 0.595  | 1.361  | 0.101  | 0.242 | 0.064  | 0.229  |
| 68 | Brown shrimp                          | 0.914  | 0.054  | 0.139  | 0.167  | 0.402 | 1.065  | 0.381  |
| 69 | White shrimp                          | 1.373  | 10.5   | 4.886  | 1.751  | 4.629 | 1.599  | 3.672  |
| 70 | Crab                                  | 1.78   | 1.206  | 1.66   | 4.596  | 3.336 | 3.544  | 10.846 |
| 71 | Sessile epifauna                      |        |        |        | 7.701  | 1.377 | 2.513  | 2.883  |
| 72 | Mobile epifauna                       | 4.622  | 0.024  | 2.397  | 20.708 | 3.666 | 4.833  | 17.196 |
| 73 | Zooplankton                           | 5.857  | 7.014  | 1.788  | 4.159  | 3.63  | 3.364  | 2.735  |
| 74 | Infauna                               | 2.871  | 0.064  | 2.702  | 11.549 | 5.994 | 4.398  | 12.338 |
| 75 | Algae                                 |        |        |        | 1.857  | 1.528 |        |        |
| 76 | Seagrass                              | 1.64   |        |        | 2.144  | 1.884 |        | 2.589  |
| 77 | Phytoplankton                         |        |        |        |        |       |        |        |
| 78 | Detritus                              | 8.699  | 4.5    | 2.133  | 27.9   | 9.534 | 9.391  | 5.5    |
| 79 | Import                                |        |        |        | 1.857  | 1.532 |        |        |

| No | Prey \ predator                       | 29     | 30     | 31     | 32     | 33     | 34     | 35    |
|----|---------------------------------------|--------|--------|--------|--------|--------|--------|-------|
| 41 | Coastal piscivores                    |        | 0.274  |        |        |        |        |       |
| 42 | Sea trout                             |        |        |        |        |        |        |       |
| 43 | Oceanic piscivores                    |        |        | 0.058  |        |        |        | 2.389 |
| 44 | Benthic piscivores                    | 1.437  | 0.231  | 0.055  |        | 0.532  | 1.083  | 0.52  |
| 45 | Reef piscivores                       | 0.412  |        | 0.054  | 3.758  | 0.225  | 2.756  | 2.394 |
| 46 | Reef invertebrate feeders             | 12.628 | 1.554  | 0.929  | 6.832  | 5.656  | 11.296 | 5.784 |
| 47 | Demersal coastal invertebrate feeders | 7.418  | 3.71   | 1.622  | 4.554  | 6.918  | 7.881  | 5.107 |
| 48 | Red drum                              |        |        |        |        |        |        |       |
| 49 | Benthic coastal invertebrate feeders  | 5.082  | 1.728  | 0.536  | 4.304  | 6.578  | 8.979  | 5.455 |
| 50 | Tilefish                              |        |        |        |        |        |        |       |
| 51 | Gray triggerfish                      |        |        |        |        |        |        |       |
| 52 | Coastal omnivores                     | 1.113  | 2.617  | 1.95   | 3.953  |        | 4.328  | 2.763 |
| 53 | Reef omnivores                        | 0.761  | 4.082  | 0.505  | 3.859  |        | 0.202  | 0.276 |
| 54 | Surface pelagics                      |        |        |        |        |        |        |       |
| 55 | Large oceanic planktivores            |        |        |        |        |        |        |       |
| 56 | Oceanic planktivores                  |        |        |        |        |        |        | 0.192 |
| 57 | Sardine-herring-scad                  | 8.515  | 9.788  | 5.982  | 3.74   | 4.991  | 8.25   | 3.769 |
| 58 | Menhaden (0yr)                        |        |        |        |        |        |        |       |
| 59 | Menhaden (1yr)                        |        |        |        |        |        |        |       |
| 60 | Menhaden (2yr)                        |        |        |        |        |        |        |       |
| 61 | Menhaden (3yr)                        |        |        |        |        |        |        |       |
| 62 | Menhaden (4yr)                        |        |        |        |        |        |        |       |
| 63 | Anchovy-silverside-killifish          |        | 5.082  |        | 3.748  | 3.893  | 5.6    | 4.188 |
| 64 | Mullet                                |        |        |        | 3.792  |        |        |       |
| 65 | Butterfish                            |        |        |        |        | 5.877  |        | 2.629 |
| 66 | Cephalopod                            | 9.833  | 3.107  | 2.144  | 3.741  | 21.937 | 3.48   | 4.123 |
| 67 | Pink shrimp                           | 0.318  | 0.384  | 0.061  | 0.219  | 0.126  | 0.068  | 0.096 |
| 68 | Brown shrimp                          | 0.196  | 0.138  | 1.01   | 3.645  | 2.086  | 1.131  | 1.593 |
| 69 | White shrimp                          | 2.094  | 2.772  | 1.517  | 5.472  | 3.132  | 0.17   | 2.391 |
| 70 | Crab                                  | 4.955  | 4.902  | 0.108  | 13.853 | 6.871  | 10.348 | 5.281 |
| 71 | Sessile epifauna                      | 6      | 0.012  | 14.664 |        | 6.434  | 6.1    | 6.303 |
| 72 | Mobile epifauna                       | 6.55   | 49.694 | 43.938 | 11.715 | 9.938  | 7      | 9.739 |
| 73 | Zooplankton                           | 6.216  | 0.067  |        | 3.952  | 5.234  | 3.813  | 5.977 |
| 74 | Infauna                               | 4.718  | 0.163  | 21.431 | 5.624  | 4.501  | 5.256  | 7.159 |
| 75 | Algae                                 |        |        |        |        |        |        | 2.336 |
| 76 | Seagrass                              |        |        |        |        |        |        |       |
| 77 | Phytoplankton                         |        |        |        |        |        | 3.117  |       |
| 78 | Detritus                              | 17.778 | 8.5    | 2.544  | 1.953  | 3.15   | 6.695  | 9.467 |
| 79 | Import                                |        |        |        |        |        |        | 4.654 |

| No | Prey \ predator                       | 36     | 37     | 38     | 39     | 40     | 41     | 42     |
|----|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| 41 | Coastal piscivores                    |        |        |        |        |        | 0.516  | 0.11   |
| 42 | Sea trout                             |        |        |        |        |        | 0.127  | 0.105  |
| 43 | Oceanic piscivores                    | 2.389  | 1.272  | 0.277  |        |        |        |        |
| 44 | Benthic piscivores                    | 1.096  | 0.151  |        | 0.28   | 0.031  | 0.103  | 0.011  |
| 45 | Reef piscivores                       | 0.239  | 0.329  |        |        |        |        |        |
| 46 | Reef invertebrate feeders             | 8.98   | 5.906  |        | 4.944  | 4.675  | 0.235  | 0.331  |
| 47 | Demersal coastal invertebrate feeders | 5.107  | 4.201  | 0.614  | 4.701  | 2.76   | 1.16   | 0.225  |
| 48 | Red drum                              |        |        |        |        |        | 0.082  |        |
| 49 | Benthic coastal invertebrate feeders  | 8.255  | 10.992 | 0.942  | 7.576  | 2.53   | 0.232  | 0.197  |
| 50 | Tilefish                              |        |        |        |        |        |        |        |
| 51 | Gray triggerfish                      |        |        |        |        | 0.058  |        |        |
| 52 | Coastal omnivores                     | 2.763  | 3.853  |        | 2.463  | 0.447  | 0.097  | 0.238  |
| 53 | Reef omnivores                        | 0.276  | 0.664  |        | 0.254  | 0.752  | 0.238  | 0.101  |
| 54 | Surface pelagics                      |        |        |        |        | 3.349  | 0.241  | 0.277  |
| 55 | Large oceanic planktivores            |        |        |        |        |        |        |        |
| 56 | Oceanic planktivores                  | 0.192  | 0.308  |        |        |        |        |        |
| 57 | Sardine-herring-scad                  | 4.669  | 8.41   | 1.792  | 1.186  | 9.679  | 7.097  | 7.894  |
| 58 | Menhaden (0yr)                        |        |        |        |        | 1.657  | 3.764  | 3.874  |
| 59 | Menhaden (1yr)                        |        |        |        |        | 0.763  | 4.673  | 5.678  |
| 60 | Menhaden (2yr)                        |        |        |        |        | 0.328  | 3.547  | 4.693  |
| 61 | Menhaden (3yr)                        |        |        |        |        | 0.017  | 1.131  | 2.003  |
| 62 | Menhaden (4yr)                        |        |        |        |        | 0.001  | 0.002  | 0.002  |
| 63 | Anchovy-silverside-killifish          | 5.188  | 4.564  |        | 2.492  | 5.701  | 7.043  | 9.924  |
| 64 | Mullet                                |        |        |        | 2.035  | 0.823  | 1.006  | 0.506  |
| 65 | Butterfish                            | 2.629  | 0.476  |        | 0.271  | 0.324  |        |        |
| 66 | Cephalopod                            | 3.923  | 5.555  | 7.035  | 10.761 | 5.811  | 10.68  | 7.701  |
| 67 | Pink shrimp                           | 0.096  | 0.088  | 0.305  | 0.068  | 0.106  | 1.083  | 0.171  |
| 68 | Brown shrimp                          | 1.593  | 1.454  | 0.251  | 1.13   | 0.164  | 1.439  | 0.103  |
| 69 | White shrimp                          | 0.239  | 2.184  | 2.461  | 0.17   | 0.605  | 1.67   | 0.526  |
| 70 | Crab                                  | 5.281  | 4.548  | 3.814  | 9.499  | 6.683  | 2.069  | 2.932  |
| 71 | Sessile epifauna                      | 3.803  | 6.117  | 7.892  | 6.462  | 1.322  | 6.508  | 4.434  |
| 72 | Mobile epifauna                       | 14.739 | 9.083  | 13.962 | 9.507  | 8.088  | 6.194  | 7.742  |
| 73 | Zooplankton                           | 5.677  | 4.891  | 29.808 | 6.843  | 6.17   | 7.787  | 4.907  |
| 74 | Infauna                               | 7.159  | 7.005  | 14.986 | 10.574 | 8.584  | 10.487 | 5.79   |
| 75 | Algae                                 | 2.336  | 3.177  | 2.58   | 1.716  | 2.835  | 2.134  | 2.942  |
| 76 | Seagrass                              |        |        |        | 6.287  | 5.219  | 2.304  | 5.263  |
| 77 | Phytoplankton                         |        |        |        | 2.319  | 2.936  | 2.688  | 5.386  |
| 78 | Detritus                              | 5.967  | 10.3   | 13.167 | 7.207  | 12.283 | 11.179 | 12.628 |
| 79 | Import                                | 4.654  | 3.949  |        |        | 5.221  | 2.4    | 3.078  |

| No | Prey \ predator                       | 43     | 44     | 45     | 46     | 47       | 48     | 49      |
|----|---------------------------------------|--------|--------|--------|--------|----------|--------|---------|
| 41 | Coastal piscivores                    | 0.03   | 0.042  |        | 0.01   | 0.096    |        | 0.05    |
| 42 | Sea trout                             | 1.422  | 0.252  |        | 0.096  | 0.096    |        |         |
| 43 | Oceanic piscivores                    | 1.478  | 2.452  |        | 0.01   | < 0.0001 |        |         |
| 44 | Benthic piscivores                    | 0.099  | 0.403  | 0.103  | 0.01   | < 0.0001 | 0.089  | 0.001   |
| 45 | Reef piscivores                       | 0.136  | 0.244  | 0.28   |        |          |        |         |
| 46 | Reef invertebrate feeders             | 1.969  | 2.796  | 5.586  | 0.056  | 0.096    | 0.395  | 0.083   |
| 47 | Demersal coastal invertebrate feeders | 2.849  | 8.64   | 0.569  | 0.096  | 0.096    | 0.389  | 0.083   |
| 48 | Red drum                              |        |        |        |        |          |        |         |
| 49 | Benthic coastal invertebrate feeders  | 3.939  | 9.59   | 6.021  | 0.026  | 0.096    | 0.662  | 0.083   |
| 50 | Tilefish                              | 0.049  |        |        |        |          |        |         |
| 51 | Gray triggerfish                      | 0.181  |        |        |        |          |        |         |
| 52 | Coastal omnivores                     | 0.282  | 2.947  | 0.94   | 0.096  | 0.096    | 0.398  | 0.083   |
| 53 | Reef omnivores                        | 0.159  |        | 0.901  | 0.096  | 0.096    | 0.391  |         |
| 54 | Surface pelagics                      | 3.276  | 3.175  | 3.691  | 0.096  | 0.096    |        | 0.083   |
| 55 | Large oceanic planktivores            | 0.014  |        |        |        |          |        |         |
| 56 | Oceanic planktivores                  | 1.454  | 0.176  | 0.993  | 0.096  | 0.096    |        |         |
| 57 | Sardine-herring-scad                  | 6.297  | 6.425  | 11.293 | 0.202  | 0.096    |        | 0.083   |
| 58 | Menhaden (0yr)                        |        | 3.134  |        |        | 0.057    | 5.273  | 0.05    |
| 59 | Menhaden (1yr)                        | 0.788  | 1.444  |        |        | 0.026    | 7.129  | 0.023   |
| 60 | Menhaden (2yr)                        | 0.339  | 0.621  |        |        | 0.011    | 4.044  | 0.01    |
| 61 | Menhaden (3yr)                        | 0.018  | 0.032  |        |        | 0.001    | 2.4    | 0.001   |
| 62 | Menhaden (4yr)                        | 0.001  | 0.003  |        |        | 0.00005  | 2.1    | 0.00004 |
| 63 | Anchovy-silverside-killifish          | 5.482  | 4.874  | 6.737  | 0.096  | 0.096    | 8.991  | 0.083   |
| 64 | Mullet                                | 1.67   | 2.681  | 3.076  |        | 0.096    | 1.338  |         |
| 65 | Butterfish                            | 1.514  | 2.652  |        |        | 0.096    |        |         |
| 66 | Cephalopod                            | 7.899  | 3.238  | 5.912  | 4.116  | 3.007    | 9.411  | 3.942   |
| 67 | Pink shrimp                           | 0.047  | 0.086  | 0.123  | 0.172  | 1.401    | 0.166  | 0.141   |
| 68 | Brown shrimp                          | 0.788  | 0.143  | 0.205  | 0.103  | 1.329    | 0.276  | 0.01    |
| 69 | White shrimp                          | 1.184  | 1.514  | 2.977  | 0.228  | 2.097    | 6.548  | 0.226   |
| 70 | Crab                                  | 1.537  | 3.105  | 6.297  | 1.7    | 1.068    | 3.773  | 2.116   |
| 71 | Sessile epifauna                      | 2.438  | 3.173  | 3.297  | 12.898 | 13.186   | 10.567 | 13.159  |
| 72 | Mobile epifauna                       | 5.102  | 6.695  | 8.09   | 13.565 | 14.402   | 14.412 | 18.4    |
| 73 | Zooplankton                           | 3.325  | 3.856  | 7.4    | 15.181 | 10.813   | 4.602  | 13.717  |
| 74 | Infauna                               | 3.086  | 5.805  | 5.497  | 15.937 | 20.557   | 6.312  | 14.469  |
| 75 | Algae                                 | 1.315  | 2.377  |        | 3.242  | 4.039    | 2.244  | 4.696   |
| 76 | Seagrass                              | 1.315  | 2.413  | 2.783  | 3.616  | 8.262    | 2.227  | 3.741   |
| 77 | Phytoplankton                         |        |        | 3.468  | 7.387  | 5.205    |        | 5.868   |
| 78 | Detritus                              | 7.712  | 11.012 | 9.68   | 14.179 | 10.009   | 5.835  | 15.033  |
| 79 | Import                                | 30.079 | 2.707  | 2.71   | 6.545  | 3.259    |        | 3.793   |

No Prey \ predator 50 51 52 53 54 55 56 41 Coastal piscivores 42 Sea trout 43 Oceanic piscivores 0.161 44 Benthic piscivores 0.55 45 Reef piscivores 0.149 46 Reef invertebrate feeders 0.773 47 Demersal coastal invertebrate feeders 8.654 0.118 48 Red drum Benthic coastal invertebrate feeders 1.404 49 5.411 0.118 0.104 Tilefish 0.012 50 Gray triggerfish 51 52 Coastal omnivores Reef omnivores 0.944 53 54 Surface pelagics 3.093 0.571 Large oceanic planktivores 55 0.438 56 Oceanic planktivores 11.681 0.029 57 Sardine-herring-scad 1.505 0.118 2.559 58 Menhaden (0yr) 59 Menhaden (1yr) 60 Menhaden (2yr) 61 Menhaden (3yr) 62 Menhaden (4yr) 63 Anchovy-silverside-killifish 0.118 3.352 64 Mullet **Butterfish** 0.677 65 66 Cephalopod 7.069 2.996 5.13 5.464 6.47 9.382 67 Pink shrimp 0.211 0.135 0.106 0.113 0.135 0.195 68 Brown shrimp 3.504 0.224 0.011 0.011 0.105 0.032 69 White shrimp 5.26 0.382 0.486 5.359 0.305 0.437 70 Crab 7.973 3.313 0.466 2.338 0.673 71 Sessile epifauna 11.92 10.211 13.563 27.01 11.385 72 Mobile epifauna 16.114 9.198 8.594 9.279 10.095 4.852 18.989 73 Zooplankton 10.066 9.274 15.959 13.389 26.106 75.24 45.41 Infauna 74 16.407 12.676 15.33 11.509 11.988 17.907 2.652 8.498 75 Algae 12.784 6.549 2.648 5.1 7.287 76 Seagrass 9.339 1.757 77 Phytoplankton 3.384 6.032 6.775 1.47 78 Detritus 5.15 26.766 10.931 11.892 12.622 79 Import 2.649 3.734 7.613

| No | Prey \ predator                       | 57     | 58     | 59     | 60     | 61     | 62     | 63     |
|----|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| 41 | Coastal piscivores                    |        |        |        |        |        |        |        |
| 42 | Sea trout                             |        |        |        |        |        |        |        |
| 43 | Oceanic piscivores                    |        |        |        |        |        |        |        |
| 44 | Benthic piscivores                    | 0.0001 |        |        |        |        |        |        |
| 45 | Reef piscivores                       |        |        |        |        |        |        |        |
| 46 | Reef invertebrate feeders             | 0.141  |        |        |        |        |        |        |
| 47 | Demersal coastal invertebrate feeders | 0.141  |        |        |        |        |        |        |
| 48 | Red drum                              |        |        |        |        |        |        |        |
| 49 | Benthic coastal invertebrate feeders  |        |        |        |        |        |        |        |
| 50 | Tilefish                              |        |        |        |        |        |        |        |
| 51 | Gray triggerfish                      |        |        |        |        |        |        |        |
| 52 | Coastal omnivores                     | 0.014  |        |        |        |        |        |        |
| 53 | Reef omnivores                        |        |        |        |        |        |        |        |
| 54 | Surface pelagics                      | 0.141  |        |        |        |        |        |        |
| 55 | Large oceanic planktivores            |        |        |        |        |        |        |        |
| 56 | Oceanic planktivores                  | 0.014  |        |        |        |        |        |        |
| 57 | Sardine-herring-scad                  | 0.001  |        |        |        |        |        |        |
| 58 | Menhaden (0yr)                        |        |        |        |        |        |        |        |
| 59 | Menhaden (1yr)                        |        |        |        |        |        |        |        |
| 60 | Menhaden (2yr)                        |        |        |        |        |        |        |        |
| 61 | Menhaden (3yr)                        |        |        |        |        |        |        |        |
| 62 | Menhaden (4yr)                        |        |        |        |        |        |        |        |
| 63 | Anchovy-silverside-killifish          | 0.141  |        |        |        |        |        | 0.01   |
| 64 | Mullet                                |        |        |        |        |        |        |        |
| 65 | Butterfish                            |        |        |        |        |        |        |        |
| 66 | Cephalopod                            | 4.018  |        |        |        |        |        |        |
| 67 | Pink shrimp                           | 0.11   |        |        |        |        |        | 0.14   |
| 68 | Brown shrimp                          | 0.012  |        |        |        |        |        | 0.013  |
| 69 | White shrimp                          | 0.127  |        |        |        |        |        | 0.05   |
| 70 | Crab                                  | 0.03   |        |        |        |        |        |        |
| 71 | Sessile epifauna                      | 11.242 |        |        |        |        |        | 9.342  |
| 72 | Mobile epifauna                       | 11.485 | 2.185  | 2.185  | 2.185  | 2.185  | 2.185  | 12.986 |
| 73 | Zooplankton                           | 20.031 | 20.239 | 20.239 | 20.239 | 20.239 | 20.239 | 19.021 |
| 74 | Infauna                               | 16.58  | 0.874  | 0.874  | 0.874  | 0.874  | 0.874  | 12.889 |
| 75 | Algae                                 | 3.712  | 6.124  | 6.124  | 6.124  | 6.124  | 6.124  | 5.335  |
| 76 | Seagrass                              | 3.713  |        |        |        |        |        | 5.7    |
| 77 | Phytoplankton                         | 6.598  | 50.3   | 50.3   | 50.3   | 50.3   | 50.3   | 15.4   |
| 78 | Detritus                              | 15.727 | 20.26  | 20.26  | 20.26  | 20.26  | 20.26  | 12.575 |
| 79 | Import                                | 6.052  |        |        |        |        |        | 6.548  |

No Prey \ predator 64 65 66 67 68 69 41 **Coastal piscivores** 42 Sea trout 43 Oceanic piscivores 44 Benthic piscivores 45 Reef piscivores 46 Reef invertebrate feeders 0.052 47 Demersal coastal invertebrate feeders 0.036 48 Red drum Benthic coastal invertebrate feeders 49 50 Tilefish Gray triggerfish 51 52 Coastal omnivores 0.004 Reef omnivores 0.013 53 54 Surface pelagics 55 Large oceanic planktivores 56 Oceanic planktivores 57 Sardine-herring-scad 0.186 58 Menhaden (0yr) 59 Menhaden (1yr) 60 Menhaden (2yr) 61 Menhaden (3yr) 62 Menhaden (4yr) 63 Anchovy-silverside-killifish 2.9 64 Mullet 65 Butterfish 66 Cephalopod 0.913 0.143 67 Pink shrimp 0.038 68 Brown shrimp 69 White shrimp 0.236 70 Crab 71 Sessile epifauna 17.297 2.55 1.55 1.55 72 Mobile epifauna 9.992 10.486 17.333 2.652 1.229 0.573 73 Zooplankton 12.718 34.68 64.768 74 Infauna 12.605 10.206 2.549 36.31 2.553 2.553 5.263 75 Algae 11.829 14.96 18.46 18.16 76 Seagrass 13.791 5.263 77 Phytoplankton 22.768 8.447 12.36 12.36 12.36 78 Detritus 9.875 8.462 64.8 11.25 31.2 63.8 79 Import 5.928

| No | Prey \ predator                       | 70     | 71     | 72     | 73    | 74     |
|----|---------------------------------------|--------|--------|--------|-------|--------|
| 41 | Coastal piscivores                    |        |        |        |       |        |
| 42 | Sea trout                             |        |        |        |       |        |
| 43 | Oceanic piscivores                    |        |        |        |       |        |
| 44 | Benthic piscivores                    |        |        |        |       |        |
| 45 | Reef piscivores                       |        |        |        |       |        |
| 46 | Reef invertebrate feeders             | 0.054  |        |        |       |        |
| 47 | Demersal coastal invertebrate feeders |        |        |        |       |        |
| 48 | Red drum                              |        |        |        |       |        |
| 49 | Benthic coastal invertebrate feeders  |        |        |        |       |        |
| 50 | Tilefish                              |        |        |        |       |        |
| 51 | Gray triggerfish                      |        |        |        |       |        |
| 52 | Coastal omnivores                     | 0.048  |        | 0.01   |       | 0.01   |
| 53 | Reef omnivores                        |        |        |        |       |        |
| 54 | Surface pelagics                      |        |        |        |       |        |
| 55 | Large oceanic planktivores            |        |        |        |       |        |
| 56 | Oceanic planktivores                  |        |        |        |       |        |
| 57 | Sardine-herring-scad                  | 0.53   |        |        |       |        |
| 58 | Menhaden (0yr)                        |        |        |        |       |        |
| 59 | Menhaden (1yr)                        |        |        |        |       |        |
| 60 | Menhaden (2yr)                        |        |        |        |       |        |
| 61 | Menhaden (3yr)                        |        |        |        |       |        |
| 62 | Menhaden (4yr)                        |        |        |        |       |        |
| 63 | Anchovy-silverside-killifish          | 0.43   |        |        |       |        |
| 64 | Mullet                                | 0.017  |        |        |       |        |
| 65 | Butterfish                            |        |        |        |       |        |
| 66 | Cephalopod                            | 0.02   |        | 0.231  |       |        |
| 67 | Pink shrimp                           | 0.062  |        |        |       |        |
| 68 | Brown shrimp                          | 0.01   |        |        |       |        |
| 69 | White shrimp                          | 0.154  |        |        |       |        |
| 70 | Crab                                  | 0.2    |        |        |       |        |
| 71 | Sessile epifauna                      |        |        | 3.009  |       |        |
| 72 | Mobile epifauna                       | 18.48  | 0.089  | 1.18   |       | 0.316  |
| 73 | Zooplankton                           |        | 0.743  |        | 4.439 |        |
| 74 | Infauna                               | 60.219 | 0.198  | 7.479  |       | 3.905  |
| 75 | Algae                                 | 0.01   |        | 15.267 |       |        |
| 76 | Seagrass                              |        |        | 7.817  |       |        |
| 77 | Phytoplankton                         |        | 51.807 | 19.499 | 71.64 | 44.449 |
| 78 | Detritus                              | 19.809 | 47.163 | 45.5   | 23.9  | 51.32  |
| 79 | Import                                |        |        |        |       |        |

Table 9. Retained bycatch estimates (t km<sup>-2</sup>) of the menhaden purse seine fishery based on Guillory and Hutton (1982) and de Silva and Condrey (1997), which sampled retained bycatch between 1980-1981 and 1994-1995, respectively.

|                                       | 1980          | 1980          |          |
|---------------------------------------|---------------|---------------|----------|
| Functional group                      | (de Silva and | (Guillory and | Average  |
| <b>U</b> .                            | Condrey 1997) | Hutton)       | C C      |
| Anchovies-silversides-killifish       | 9.65E-06      | •             | 9.65E-06 |
| Atlantic sharpnose shark              |               | 2.07E-05      | 2.07E-05 |
| Benthic coastal invertebrate feeders  | 1.50E-05      | 1.13E-04      | 6.41E-05 |
| Benthic piscivores                    | 2.42E-07      |               | 2.42E-07 |
| Blacktip shark                        | 9.59E-05      | 5.44E-04      | 3.20E-04 |
| Crab                                  | 1.00E-04      | 1.70E-04      | 1.35E-04 |
| Brown shrimp                          | 2.66E-05      |               | 2.66E-05 |
| Butterfish                            | 1.40E-03      | 9.61E-04      | 1.18E-03 |
| Cephalopods                           | 8.61E-05      | 5.66E-05      | 7.13E-05 |
| Coastal omnivores                     | 1.06E-04      | 1.13E-04      | 1.10E-04 |
| Coastal piscivores                    | 2.78E-02      | 3.39E-04      | 1.41E-02 |
| Demersal coastal invertebrate feeders | 9.12E-05      | 3.18E-02      | 1.59E-02 |
| Dusky shark                           |               | 1.63E-04      | 1.63E-04 |
| King mackerel                         |               | 1.70E-04      | 1.70E-04 |
| Large coastal sharks                  |               | 2.60E-04      | 2.60E-04 |
| Mobile epifauna                       | 1.64E-06      | 5.66E-05      | 2.91E-05 |
| Mullet                                | 2.42E-03      | 5.66E-05      | 1.24E-03 |
| Oceanic piscivores                    | 1.14E-04      | 6.22E-04      | 3.68E-04 |
| Pelagic coastal piscivores            | 7.85E-04      | 1.92E-03      | 1.35E-03 |
| Red drum                              | 2.05E-05      |               | 2.05E-05 |
| Reef invertebrate feeders             | 2.42E-07      | 3.96E-04      | 1.98E-04 |
| Sandbar shark                         |               | 1.18E-05      | 1.18E-05 |
| Sardine-herring-scad                  | 8.62E-04      | 2.94E-03      | 1.90E-03 |
| Seatrout                              | 1.54E-02      | 1.39E-02      | 1.47E-02 |
| Skates-rays                           |               | 3.39E-04      | 3.39E-04 |
| Small coastal sharks                  |               | 1.18E-05      | 1.18E-05 |
| Spanish mackerel                      | 1.25E-03      | 1.47E-03      | 1.36E-03 |
| Surface pelagics                      | 2.90E-05      |               | 2.90E-05 |
| White shrimp                          | 3.27E-05      |               | 3.27E-05 |
| Zooplankton                           | 1.96E-03      |               | 1.96E-03 |
| Total                                 | 5.26E-02      | 5.64E-02      | 5.61E-02 |

| No | Eunctional group                      | Dredge/  | Handline | Longline | Longline  | Longline | Note     | Total<br>1.26E+00<br>7.59E-01<br>2.16E-01<br>1.31E-01 |
|----|---------------------------------------|----------|----------|----------|-----------|----------|----------|-------------------------------------------------------|
| NU | r unclional group                     | Dig      | Tanume   | (Fish)   | (Pelagic) | (Shark)  | Net3     | TOtal                                                 |
| 60 | Menhaden (2yr)                        | 0        | 0        | 0        | 0         | 0        | 4.97E-04 | 1.26E+00                                              |
| 59 | Menhaden (1yr)                        | 0        | 0        | 0        | 0         | 0        | 2.63E-04 | 7.59E-01                                              |
| 61 | Menhaden (3yr)                        | 0        | 0        | 0        | 0         | 0        | 7.00E-05 | 2.16E-01                                              |
| 68 | Brown shrimp                          | 0        | 0        | 0        | 0         | 0        | 1.79E-03 | 1.31E-01                                              |
| 69 | White shrimp                          | 0        | 0        | 0        | 0         | 0        | 2.22E-03 | 6.52E-02                                              |
| 70 | Crab                                  | 3.23E-06 | 4.60E-04 | 0        | 0         | 0        | 1.88E-04 | 6.40E-02                                              |
| 47 | Demersal coastal invertebrate feeders | 0        | 3.20E-04 | 5.54E-03 | 0         | 0        | 9.93E-03 | 4.45E-02                                              |
| 64 | Mullet                                | 0        | 3.23E-06 | 0        | 0         | 0        | 4.17E-02 | 4.34E-02                                              |
| 72 | Mobile epifauna                       | 1.62E-04 | 3.76E-06 | 0        | 0         | 0        | 1.82E-04 | 3.39E-02                                              |
| 62 | Menhaden (4+yr)                       | 0        | 0        | 0        | 0         | 0        | 1.18E-05 | 3.17E-02                                              |
| 71 | Sessile epifauna                      | 2.26E-02 | 0        | 0        | 0         | 0        | 0        | 2.77E-02                                              |
| 67 | Pink shrimp                           | 0        | 0        | 0        | 0         | 0        | 0        | 2.69E-02                                              |
| 42 | Sea trout                             | 0        | 4.41E-04 | 0        | 0         | 0        | 3.84E-03 | 2.23E-02                                              |
| 41 | Coastal piscivores                    | 0        | 1.29E-05 | 1.15E-04 | 0         | 0        | 1.96E-03 | 1.74E-02                                              |
| 18 | Pelagic coastal piscivores            | 0        | 5.03E-04 | 9.68E-06 | 0         | 0        | 7.42E-03 | 9.86E-03                                              |
| 57 | Sardine-herring-scad                  | 0        | 0        | 0        | 0         | 0        | 3.46E-03 | 7.59E-03                                              |
| 48 | Red drum                              | 0        | 1.51E-04 | 0        | 0         | 0        | 4.14E-03 | 6.51E-03                                              |
| 29 | Red grouper (3+yr)                    | 0        | 5.63E-03 | 3.98E-09 | 0         | 0        | 0        | 5.70E-03                                              |
| 17 | Swordfish                             | 0        | 7.10E-05 | 2.63E-03 | 2.78E-03  | 0        | 0        | 5.48E-03                                              |
| 37 | Red snapper (3+yr)                    | 0        | 4.75E-03 | 2.00E-04 | 0         | 0        | 0        | 4.95E-03                                              |
| 24 | Spanish mackerel (1+yr)               | 0        | 1.43E-04 | 0        | 0         | 0        | 2.67E-03 | 4.17E-03                                              |
| 22 | King mackerel (1+yr)                  | 0        | 2.51E-03 | 0        | 0         | 0        | 1.38E-03 | 4.06E-03                                              |
| 46 | Reef invertebrate feeders             | 0        | 8.05E-04 | 6.45E-06 | 0         | 0        | 7.37E-04 | 3.03E-03                                              |
| 15 | Other tunas                           | 0        | 4.84E-07 | 4.52E-05 | 1.46E-05  | 0        | 0        | 2.95E-03                                              |

Table 10A. Commercial catches by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial landings to lowest commercial landings.
| No | Functional group          | Dredge/<br>Dia | Handline | Longline<br>(Fish) | Longline<br>(Pelagic) | Longline<br>(Shark) | Nets     | Total    |
|----|---------------------------|----------------|----------|--------------------|-----------------------|---------------------|----------|----------|
| 27 | Gag grouper (3+yr)        | 0              | 2.38E-03 | 1.40E-04           | 0                     | 0                   | 0        | 2.52E-03 |
| 58 | Menhaden (0vr)            | 0              | 0        | 0                  | 0                     | 0                   | 1.07E-03 | 2.39E-03 |
| 13 | Yellowfin tuna            | 0              | 0        | 7.74E-05           | 1.92E-03              | 0                   | 0        | 2.00E-03 |
| 73 | Zooplankton               | 0              | 0        | 0                  | 0                     | 0                   | 0        | 1.96E-03 |
| 36 | Red snapper (1-2yr)       | 0              | 1.70E-03 | 1.82E-06           | 0                     | 0                   | 0        | 1.70E-03 |
| 31 | Yellowedge grouper (3+yr) | 0              | 5.53E-04 | 7.22E-04           | 0                     | 0                   | 0        | 1.27E-03 |
| 65 | Butterfish                | 0              | 0        | 0                  | 0                     | 0                   | 0        | 1.18E-03 |
| 40 | Other snapper             | 0              | 7.13E-04 | 6.45E-06           | 0                     | 0                   | 2.58E-04 | 1.01E-03 |
| 39 | Mutton snapper            | 0              | 3.36E-04 | 1.46E-04           | 0                     | 0                   | 0        | 5.18E-04 |
| 16 | Billfish                  | 0              | 0        | 0                  | 4.89E-04              | 0                   | 0        | 4.89E-04 |
| 38 | Vermilion snapper         | 0              | 4.51E-04 | 6.50E-07           | 0                     | 0                   | 0        | 4.51E-04 |
| 43 | Oceanic piscivores        | 0              | 0        | 0                  | 0                     | 0                   | 0        | 3.68E-04 |
| 6  | Blacktip shark            | 0              | 6.29E-05 | 0                  | 0                     | 1.10E-04            | 1.11E-05 | 3.53E-04 |
| 25 | Skates-rays               | 0              | 0        | 0                  | 0                     | 0                   | 0        | 3.39E-04 |
| 54 | Surface pelagics          | 0              | 0        | 0                  | 0                     | 0                   | 3.23E-06 | 3.26E-04 |
| 32 | Goliath grouper           | 0              | 2.68E-04 | 0                  | 0                     | 0                   | 0        | 2.94E-04 |
| 19 | Amberjack                 | 0              | 2.51E-04 | 7.05E-06           | 0                     | 0                   | 6.45E-06 | 2.65E-04 |
| 9  | Large coastal sharks      | 0              | 0        | 0                  | 0                     | 0                   | 0        | 2.60E-04 |
| 33 | Deep-water grouper        | 0              | 1.48E-04 | 2.58E-05           | 0                     | 0                   | 0        | 1.77E-04 |
| 7  | Dusky shark               | 0              | 0        | 0                  | 0                     | 0                   | 0        | 1.62E-04 |
| 66 | Cephalopod                | 0              | 0        | 0                  | 0                     | 0                   | 0        | 1.56E-04 |
| 51 | Gray triggerfish          | 0              | 1.36E-04 | 5.41E-06           | 0                     | 0                   | 0        | 1.41E-04 |
| 20 | Cobia                     | 0              | 1.04E-04 | 9.68E-06           | 0                     | 0                   | 1.94E-05 | 1.33E-04 |
| 23 | Spanish mackerel (0-1yr)  | 0              | 8.57E-07 | 0                  | 0                     | 0                   | 1.32E-04 | 1.33E-04 |
| 52 | Coastal omnivores         | 0              | 0        | 0                  | 0                     | 0                   | 0        | 1.10E-04 |

Table 10A-Continued. Commercial catches by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial landings to lowest commercial landings.

| No | Functional group                     | Dredge/<br>Dig | Handline | Longline<br>(Fish) | Longline<br>(Pelagic) | Longline<br>(Shark) | Nets | Total    |
|----|--------------------------------------|----------------|----------|--------------------|-----------------------|---------------------|------|----------|
| 50 | Tilefish                             | 0              | 6.02E-05 | 4.08E-05           | 0                     | 0                   | 0    | 1.01E-04 |
| 49 | Benthic coastal invertebrate feeders | 0              | 0        | 0                  | 0                     | 0                   | 0    | 6.41E-05 |
| 8  | Sandbar shark                        | 0              | 1.84E-06 | 0                  | 0                     | 0                   | 0    | 3.04E-05 |
| 26 | Gag grouper (0-3yr)                  | 0              | 2.67E-05 | 1.73E-07           | 0                     | 0                   | 0    | 2.69E-05 |
| 11 | Atlantic sharpnose shark             | 0              | 0        | 0                  | 0                     | 9.28E-09            | 0    | 2.07E-05 |
| 14 | Bluefin tuna                         | 0              | 0        | 1.61E-05           | 0                     | 0                   | 0    | 1.61E-05 |
| 12 | Small coastal sharks                 | 0              | 2.44E-08 | 0                  | 0                     | 1.82E-06            | 0    | 1.37E-05 |
| 74 | Infauna                              | 9.68E-06       | 0        | 0                  | 0                     | 0                   | 0    | 9.68E-06 |
| 63 | Anchovy-silverside-killifish         | 0              | 0        | 0                  | 0                     | 0                   | 0    | 9.65E-06 |
| 10 | Large oceanic sharks                 | 0              | 5.66E-07 | 0                  | 0                     | 0                   | 0    | 5.66E-07 |
| 44 | Benthic piscivores                   | 0              | 0        | 0                  | 0                     | 0                   | 0    | 2.42E-07 |
| 30 | Yellowedge grouper (0-3yr)           | 0              | 1.40E-08 | 1.71E-09           | 0                     | 0                   | 0    | 1.57E-08 |
| 35 | Red snapper (0yr)                    | 0              | 1.97E-09 | 3.06E-09           | 0                     | 0                   | 0    | 5.04E-09 |

Table 10A-Continued. Commercial catches by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial landings to lowest commercial landings.

| No  | Eurotional group                      | Pots and | Purse Seine | Purse Seine | Bottom Trawl | Bottom Trawl | Othor    | Total    |
|-----|---------------------------------------|----------|-------------|-------------|--------------|--------------|----------|----------|
| INO | Functional group                      | Traps    | (Menhaden)  | (Other)     | (Other)      | (Shrimp)     | Other    | TOLAI    |
| 60  | Menhaden (2yr)                        | 0        | 1.25E+00    | 8.59E-04    | 0            | 0            | 0        | 1.26E+00 |
| 59  | Menhaden (1yr)                        | 0        | 7.59E-01    | 3.25E-04    | 0            | 0            | 0        | 7.59E-01 |
| 61  | Menhaden (3yr)                        | 0        | 2.16E-01    | 1.13E-04    | 0            | 0            | 0        | 2.16E-01 |
| 68  | Brown shrimp                          | 0        | 2.66E-05    | 0           | 2.78E-02     | 1.01E-01     | 0        | 1.31E-01 |
| 69  | White shrimp                          | 0        | 3.27E-05    | 0           | 6.13E-05     | 6.29E-02     | 0        | 6.52E-02 |
| 70  | Crab                                  | 4.46E-02 | 1.35E-04    | 0           | 9.68E-06     | 1.86E-02     | 0        | 6.40E-02 |
| 47  | Demersal coastal invertebrate feeders | 1.39E-03 | 1.59E-02    | 0           | 1.58E-04     | 1.13E-02     | 9.68E-06 | 4.45E-02 |
| 64  | Mullet                                | 0        | 1.24E-03    | 1.87E-04    | 0            | 2.18E-04     | 3.23E-06 | 4.34E-02 |
| 72  | Mobile epifauna                       | 1.33E-02 | 2.91E-05    | 6.45E-06    | 1.01E-03     | 1.91E-02     | 2.58E-04 | 3.39E-02 |
| 62  | Menhaden (4+yr)                       | 0        | 3.17E-02    | 1.32E-05    | 0            | 0            | 0        | 3.17E-02 |
| 71  | Sessile epifauna                      | 0        | 0           | 0           | 0            | 5.09E-03     | 0        | 2.77E-02 |
| 67  | Pink shrimp                           | 0        | 0           | 0           | 5.61E-04     | 2.63E-02     | 0        | 2.69E-02 |
| 42  | Sea trout                             | 0        | 1.47E-02    | 0           | 4.19E-05     | 3.29E-03     | 0        | 2.23E-02 |
| 41  | Coastal piscivores                    | 0        | 1.41E-02    | 1.25E-03    | 3.23E-06     | 0            | 0        | 1.74E-02 |
| 18  | Pelagic coastal piscivores            | 0        | 1.35E-03    | 5.77E-04    | 0            | 3.52E-06     | 0        | 9.86E-03 |
| 57  | Sardine-herring-scad                  | 0        | 1.90E-03    | 2.23E-03    | 0            | 0            | 0        | 7.59E-03 |
| 48  | Red drum                              | 0        | 2.05E-05    | 0           | 0            | 2.20E-03     | 0        | 6.51E-03 |
| 29  | Red grouper (3+yr)                    | 6.53E-05 | 0           | 0           | 0            | 0            | 0        | 5.70E-03 |
| 17  | Swordfish                             | 0        | 0           | 0           | 0            | 0            | 0        | 5.48E-03 |
| 37  | Red snapper (3+yr)                    | 0        | 0           | 0           | 0            | 0            | 0        | 4.95E-03 |
| 24  | Spanish mackerel (1+yr)               | 0        | 1.36E-03    | 0           | 0            | 0            | 0        | 4.17E-03 |
| 22  | King mackerel (1+yr)                  | 0        | 1.70E-04    | 0           | 0            | 0            | 0        | 4.06E-03 |
| 46  | Reef invertebrate feeders             | 8.71E-05 | 1.98E-04    | 3.23E-06    | 6.45E-06     | 1.18E-03     | 1.94E-05 | 3.03E-03 |
| 15  | Other tuna                            | 0        | 0           | 2.88E-03    | 0            | 0            | 0        | 2.95E-03 |

Table 10B. Commercial catches by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial landings to lowest commercial landings.

| No | Functional group          | Pots and<br>Traps | Purse Seine<br>(Menhaden) | Purse Seine<br>(Other) | Bottom Trawl<br>(Other) | Bottom<br>Trawl<br>(Shrimp) | Other    | Total    |
|----|---------------------------|-------------------|---------------------------|------------------------|-------------------------|-----------------------------|----------|----------|
| 27 | Gag grouper (3+yr)        | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 2.52E-03 |
| 58 | Menhaden (0yr)            | 0                 | 1.32E-03                  | 2.04E-06               | 0                       | 0                           | 0        | 2.39E-03 |
| 13 | Yellowfin tuna            | 0                 | 0                         | 0                      | 0                       | 0                           | 5.81E-05 | 2.00E-03 |
| 73 | Zooplankton               | 0                 | 1.96E-03                  | 0                      | 0                       | 0                           | 0        | 1.96E-03 |
| 36 | Red snapper (1-2yr)       | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.70E-03 |
| 31 | Yellowedge grouper (3+yr) | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.27E-03 |
| 65 | Butterfish                | 0                 | 1.18E-03                  | 0                      | 0                       | 0                           | 0        | 1.18E-03 |
| 40 | Other snapper             | 3.55E-05          | 0                         | 0                      | 0                       | 0                           | 1.94E-05 | 1.01E-03 |
| 39 | Mutton snapper            | 3.55E-05          | 0                         | 0                      | 0                       | 0                           | 6.45E-06 | 5.18E-04 |
| 16 | Billfish                  | 0                 | 0                         | 0                      | 0                       | 0                           | 2.26E-06 | 4.89E-04 |
| 38 | Vermilion snapper         | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 4.51E-04 |
| 43 | Oceanic piscivores        | 0                 | 3.68E-04                  | 0                      | 0                       | 0                           | 0        | 3.68E-04 |
| 6  | Blacktip shark            | 0                 | 1.68E-04                  | 0                      | 0                       | 0                           | 0        | 3.53E-04 |
| 25 | Skates-rays               | 0                 | 3.39E-04                  | 0                      | 0                       | 0                           | 0        | 3.39E-04 |
| 54 | Surface pelagics          | 0                 | 2.90E-05                  | 2.94E-04               | 0                       | 0                           | 0        | 3.26E-04 |
| 32 | Goliath grouper           | 0                 | 0                         | 0                      | 0                       | 2.67E-05                    | 0        | 2.94E-04 |
| 19 | Amberjack                 | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 2.65E-04 |
| 9  | Large coastal sharks      | 0                 | 2.60E-04                  | 0                      | 0                       | 0                           | 0        | 2.60E-04 |
| 33 | Deep-water grouper        | 3.23E-06          | 0                         | 0                      | 0                       | 0                           | 0        | 1.77E-04 |
| 7  | Dusky shark               | 0                 | 1.62E-04                  | 0                      | 0                       | 0                           | 0        | 1.62E-04 |
| 66 | Cephalopod                | 0                 | 7.13E-05                  | 0                      | 1.94E-05                | 6.54E-05                    | 0        | 1.56E-04 |
| 51 | Gray triggerfish          | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.41E-04 |
| 20 | Cobia                     | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.33E-04 |
| 23 | Spanish mackerel (0-1yr)  | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.33E-04 |
| 52 | Coastal omnivores         | 0                 | 1.10E-04                  | 0                      | 0                       | 0                           | 0        | 1.10E-04 |

Table 10B-Continued. Commercial catches by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial landings to lowest commercial landings.

Table 10B-Continued. Commercial catches by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial landings to lowest commercial landings.

| No | Functional group                     | Pots and<br>Traps | Purse Seine<br>(Menhaden) | Purse Seine<br>(Other) | Bottom Trawl<br>(Other) | Bottom<br>Trawl<br>(Shrimp) | Other    | Total    |
|----|--------------------------------------|-------------------|---------------------------|------------------------|-------------------------|-----------------------------|----------|----------|
| 50 | Tilefish                             | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.01E-04 |
| 49 | Benthic coastal invertebrate feeders | 0                 | 6.41E-05                  | 0                      | 0                       | 0                           | 1.81E-04 | 6.41E-05 |
| 8  | Sandbar shark                        | 0                 | 2.86E-05                  | 0                      | 0                       | 0                           | 0        | 3.04E-05 |
| 26 | Gag grouper (0-3yr)                  | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 2.69E-05 |
| 11 | Atlantic sharpnose shark             | 0                 | 2.07E-05                  | 0                      | 0                       | 0                           | 0        | 2.07E-05 |
| 14 | Bluefin tuna                         | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.61E-05 |
| 12 | Small coastal sharks                 | 0                 | 1.18E-05                  | 0                      | 0                       | 0                           | 0        | 1.37E-05 |
| 74 | Infauna                              | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 9.68E-06 |
| 63 | Anchovy-silverside-killifish         | 0                 | 9.65E-06                  | 0                      | 0                       | 0                           | 0        | 9.65E-06 |
| 10 | Large oceanic sharks                 | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 5.66E-07 |
| 44 | Benthic piscivores                   | 0                 | 2.42E-07                  | 0                      | 0                       | 0                           | 0        | 2.42E-07 |
| 30 | Yellowedge grouper (0-3yr)           | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 1.57E-08 |
| 35 | Red snapper (0yr)                    | 0                 | 0                         | 0                      | 0                       | 0                           | 0        | 5.04E-09 |

Table 11. Released bycatch estimates (t km<sup>-2</sup>) of the menhaden purse seine fishery based on the de Silva and Condrey (1997) study, which sampled released bycatch during 1994 and 1995. The 1994-1995 column is a weighted average of species-specific bycatch estimates across both years, weighted by number of sets, and the 1980 column is the 1994-1995 estimates scaled back to 1980 using the ratio of total menhaden landings between years.

| Functional group                      | Released bycatch<br>estimates |          |  |  |
|---------------------------------------|-------------------------------|----------|--|--|
|                                       | 1994-1995                     | 1980     |  |  |
| Benthic coastal invertebrate feeders  | 5.68E-09                      | 6.51E-09 |  |  |
| Benthic piscivores                    | 4.62E-12                      | 5.30E-12 |  |  |
| Blacktip shark                        | 3.70E-07                      | 4.24E-07 |  |  |
| Coastal piscivores                    | 6.15E-09                      | 7.05E-09 |  |  |
| Demersal coastal invertebrate feeders | 1.97E-06                      | 2.26E-06 |  |  |
| Dusky shark                           | 8.84E-07                      | 1.01E-06 |  |  |
| Large coastal sharks                  | 6.37E-07                      | 7.31E-07 |  |  |
| Oceanic piscivores                    | 5.52E-08                      | 6.34E-08 |  |  |
| Pelagic coastal piscivores            | 1.03E-07                      | 1.18E-07 |  |  |
| Red drum                              | 1.68E-08                      | 1.92E-08 |  |  |
| Sandbar shark                         | 9.75E-10                      | 1.12E-09 |  |  |
| Small coastal sharks                  | 5.91E-10                      | 6.78E-10 |  |  |
| Sea trout                             | 6.48E-07                      | 7.43E-07 |  |  |
| Spanish mackerel                      | 3.09E-07                      | 3.54E-07 |  |  |

| No | Functional group                         | Handline | Longline<br>(Fish) | Longline<br>(Pelagic) | Longline<br>(Shark) | Nets     | Pots and<br>Traps | Purse<br>Seine<br>(Menhaden) | Bottom<br>Trawl<br>(Shrimp) | Total    |
|----|------------------------------------------|----------|--------------------|-----------------------|---------------------|----------|-------------------|------------------------------|-----------------------------|----------|
| 47 | Demersal coastal<br>invertebrate feeders | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 2.26E-06                     | 1.47E-02                    | 1.47E-02 |
| 11 | Atlantic sharpnose shark                 | 1.10E-07 | 0                  | 0                     | 9.28E-09            | 0        | 0                 | 0                            | 6.68E-03                    | 6.68E-03 |
| 51 | Gray triggerfish                         | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 6.16E-03                    | 6.16E-03 |
| 24 | Spanish mackerel (1+yr)                  | 1.44E-07 | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 6.05E-03                    | 6.05E-03 |
| 42 | Sea trout                                | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 7.43E-07                     | 4.22E-03                    | 4.22E-03 |
| 38 | Vermilion snapper                        | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 2.24E-03                    | 2.24E-03 |
| 23 | Spanish mackerel (0-1yr)                 | 9.58E-10 | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 1.47E-03                    | 1.47E-03 |
| 46 | Reef invertebrate feeders                | 9.80E-04 | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 5.33E-05                    | 1.03E-03 |
| 35 | Red snapper (0yr)                        | 5.45E-08 | 5.34E-08           | 0                     | 0                   | 0        | 0                 | 0                            | 9.11E-04                    | 9.11E-04 |
| 20 | Cobia                                    | 3.23E-10 | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 5.61E-04                    | 5.61E-04 |
| 29 | Red grouper (3+yr)                       | 5.01E-05 | 1.89E-04           | 0                     | 0                   | 1.68E-07 | 1.38E-05          | 0                            | 0                           | 2.53E-04 |
| 36 | Red snapper (1-2yr)                      | 1.03E-05 | 1.06E-04           | 0                     | 0                   | 0        | 0                 | 0                            | 6.18E-05                    | 1.78E-04 |
| 12 | Small coastal sharks                     | 0        | 0                  | 0                     | 1.57E-06            | 8.07E-06 | 0                 | 2.94E-10                     | 1.64E-04                    | 1.74E-04 |
| 37 | Red snapper (3+yr)                       | 4.01E-08 | 1.67E-04           | 0                     | 0                   | 0        | 0                 | 0                            | 1.35E-13                    | 1.67E-04 |
| 48 | Red drum                                 | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 1.92E-08                     | 1.59E-04                    | 1.59E-04 |
| 44 | Benthic piscivores                       | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 5.30E-12                     | 1.14E-04                    | 1.14E-04 |
| 6  | Blacktip shark                           | 1.95E-06 | 0                  | 0                     | 0                   | 0        | 0                 | 4.24E-07                     | 8.49E-05                    | 8.72E-05 |
| 21 | King mackerel (0-1yr)                    | 0        | 0                  | 0                     | 0                   | 0        | 0                 | 0                            | 7.35E-05                    | 7.35E-05 |
| 13 | Yellowfin tuna                           | 1.09E-06 | 0                  | 2.93E-05              | 0                   | 0        | 0                 | 0                            | 0                           | 3.04E-05 |
| 9  | Large coastal sharks                     | 5.45E-07 | 0                  | 0                     | 2.34E-05            | 0        | 0                 | 7.31E-07                     | 7.85E-07                    | 2.55E-05 |
| 14 | Bluefin tuna                             | 0        | 0                  | 2.33E-05              | 0                   | 0        | 0                 | 0                            | 0                           | 2.33E-05 |
| 17 | Swordfish                                | 0        | 0                  | 2.28E-05              | 0                   | 0        | 0                 | 0                            | 0                           | 2.28E-05 |
| 15 | Other tunas                              | 0        | 0                  | 1.99E-05              | 0                   | 0        | 0                 | 0                            | 0                           | 1.99E-05 |
| 50 | Tilefish                                 | 0        | 1.36E-05           | 0                     | 0                   | 0        | 0                 | 0                            | 0                           | 1.36E-05 |

Table 12. Commercial discards by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial discards to lowest commercial discards.

Table 12-Continued. Commercial discards by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total commercial discards to lowest commercial discards.

|    |                      |          | Longling | Longling  | Longling |          | Pote and | Purse     | Botton    | n        |
|----|----------------------|----------|----------|-----------|----------|----------|----------|-----------|-----------|----------|
| No | Functional group     | Handline |          |           | (Shork)  | Nets     |          | ' Seine   | Traw      | Total    |
|    |                      |          | (FISH)   | (Pelagic) | (Shark)  |          | naps     | (Menhader | n) (Shrim | o)       |
| 18 | Pelagic coastal      | 5.82E-06 | 0        | 0         | 0        | 1.22E-06 | 0        | 1.18E-07  | 0         | 7.16E-06 |
|    | piscivores           |          |          |           |          |          |          |           |           |          |
| 22 | King mackerel (1+yr) | 0        | 0        | 0         | 0        | 2.91E-06 | 0        | 0         | 0         | 2.91E-06 |
| 27 | Gag grouper (3+yr)   | 2.07E-06 | 2.90E-08 | 0         | 0        | 0        | 0        | 0         | 0         | 2.10E-06 |
| 26 | Gag grouper (0-3yr)  | 2.00E-06 | 1.07E-08 | 0         | 0        | 0        | 0        | 0         | 0         | 2.01E-06 |
| 39 | Mutton snapper       | 1.66E-06 | 0        | 0         | 0        | 0        | 0        | 0         | 0         | 1.66E-06 |
| 7  | Dusky shark          | 0        | 0        | 0         | 0        | 0        | 0        | 1.01E-06  | 0         | 1.01E-06 |
| 28 | Red grouper (0-3yr)  | 4.71E-08 | 2.22E-07 | 0         | 0        | 0        | 1.90E-07 | 0         | 0         | 4.59E-07 |
| 19 | Amberjack            | 3.68E-07 | 2.58E-10 | 0         | 0        | 0        | 0        | 0         | 0         | 3.69E-07 |
| 43 | Oceanic piscivores   | 0        | 0        | 0         | 0        | 0        | 0        | 6.34E-08  | 0         | 6.34E-08 |
| 41 | Coastal piscivores   | 0        | 0        | 0         | 0        | 0        | 0        | 7.05E-09  | 0         | 7.05E-09 |
| 49 | Benthic coastal      | 0        | 0        | 0         | 0        | 0        | 0        | 6.51E-09  | 0         | 6.51E-09 |
|    | invertebrate feeders |          |          |           |          |          |          |           |           |          |
| 8  | Sandbar shark        | 0        | 0        | 0         | 0        | 0        | 0        | 1.12E-09  | 0         | 1.12E-09 |

Table 13. Recreational catches (t km<sup>-2</sup>) by fishing mode and combined in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total recreational landings to lowest recreational landings.

| No | Functional group              | Headboat | Shore    | Charter  | Private  | Total    |
|----|-------------------------------|----------|----------|----------|----------|----------|
| 15 | Sea trout                     | 3.32E-06 | 7.88E-03 | 8.83E-04 | 1.41E-02 | 2.29E-02 |
| 57 | Demersal coastal invertebrate | 8.46E-05 | 2.86E-03 | 7.56E-05 | 9.07E-03 | 1.21E-02 |
|    | feeders                       |          |          |          |          |          |
| 43 | Reef invertebrate feeders     | 1.52E-04 | 1.54E-03 | 4.90E-04 | 7.62E-03 | 9.80E-03 |
| 16 | Red drum                      | 1.21E-06 | 8.30E-04 | 9.88E-05 | 5.02E-03 | 5.95E-03 |
| 10 | Amberjack                     | 2.00E-04 | 0        | 4.90E-03 | 7.26E-04 | 5.82E-03 |
| 35 | Red snapper (3+yr)            | 1.87E-03 | 0        | 1.90E-03 | 1.90E-03 | 5.67E-03 |
| 49 | Pelagic coastal piscivores    | 6.09E-05 | 9.64E-04 | 1.79E-03 | 2.82E-03 | 5.63E-03 |
| 63 | King mackerel (1+yr)          | 8.02E-04 | 7.44E-04 | 1.13E-03 | 2.60E-03 | 5.28E-03 |
| 26 | Reef piscivores               | 2.62E-06 | 3.95E-05 | 2.09E-04 | 4.72E-03 | 4.98E-03 |
| 39 | Shallow-water grouper         | 7.68E-06 | 1.32E-03 | 1.61E-03 | 1.18E-03 | 4.11E-03 |
| 38 | Coastal omnivores             | 1.12E-05 | 1.15E-03 | 0        | 1.42E-03 | 2.58E-03 |
| 27 | Benthic piscivores            | 3.34E-07 | 1.05E-03 | 4.30E-06 | 9.93E-04 | 2.05E-03 |
| 32 | Gag grouper (3+yr)            | 1.19E-04 | 1.71E-04 | 5.63E-04 | 1.06E-03 | 1.91E-03 |
| 24 | Spanish mackerel (1+yr)       | 3.81E-07 | 5.11E-04 | 0        | 1.37E-03 | 1.88E-03 |
| 6  | Cobia                         | 8.86E-06 | 5.56E-06 | 0        | 1.57E-03 | 1.59E-03 |
| 14 | Gray triggerfish              | 8.59E-05 | 1.31E-05 | 6.45E-04 | 7.95E-04 | 1.54E-03 |
| 41 | Coastal piscivores            | 5.88E-07 | 7.81E-04 | 3.25E-04 | 4.22E-04 | 1.53E-03 |
| 42 | Mullet                        | 0        | 1.19E-03 | 0        | 3.29E-04 | 1.52E-03 |
| 31 | Red grouper (3+yr)            | 2.07E-04 | 0        | 3.82E-04 | 6.51E-04 | 1.24E-03 |
| 8  | Other snapper                 | 1.72E-05 | 2.22E-04 | 2.35E-04 | 7.01E-04 | 1.17E-03 |
| 20 | Billfish                      | 4.48E-07 | 2.17E-04 | 1.89E-04 | 5.42E-04 | 9.48E-04 |
| 50 | Deep-water grouper            | 9.56E-06 | 0        | 1.95E-05 | 7.09E-04 | 7.38E-04 |
| 53 | Atlantic sharpnose shark      | 7.78E-05 | 0        | 1.21E-05 | 5.55E-04 | 6.45E-04 |
| 7  | Gag grouper (0-3yr)           | 2.52E-05 | 0        | 9.56E-05 | 4.56E-04 | 5.77E-04 |
| 36 | Other tunas                   | 7.01E-06 | 1.51E-04 | 1.40E-04 | 1.03E-04 | 4.01E-04 |
| 62 | Red snapper (1-2yr)           | 3.76E-04 | 0        | 0        | 0        | 3.76E-04 |
| 47 | Mutton snapper                | 0        | 2.63E-04 | 2.56E-05 | 8.46E-05 | 3.73E-04 |
| 11 | Large coastal sharks          | 2.51E-06 | 5.47E-05 | 7.87E-07 | 2.40E-04 | 2.98E-04 |
| 25 | Blacktip shark                | 2.48E-05 | 0        | 2.88E-05 | 1.45E-04 | 1.98E-04 |
| 64 | Tilefish                      | 5.95E-07 | 1.95E-04 | 0        | 8.22E-07 | 1.96E-04 |
| 12 | Vermilion snapper             | 5.86E-05 | 0        | 1.44E-05 | 1.08E-04 | 1.81E-04 |
| 34 | Yellowfin tuna                | 1.15E-07 | 0        | 1.43E-04 | 0        | 1.43E-04 |
| 9  | Sandbar shark                 | 8.43E-06 | 3.46E-05 | 4.95E-05 | 1.49E-05 | 1.07E-04 |
| 45 | Skates-rays                   | 7.96E-08 | 6.61E-05 | 3.79E-06 | 1.31E-05 | 8.31E-05 |
| 29 | Dusky shark                   | 7.49E-07 | 0        | 0        | 8.07E-05 | 8.15E-05 |
| 44 | Small coastal sharks          | 2.67E-07 | 0        | 4.12E-05 | 3.58E-05 | 7.72E-05 |

| No | Functional group                        | Headboat | Shore    | Charter  | Private  | Total    |
|----|-----------------------------------------|----------|----------|----------|----------|----------|
| 13 | Benthic coastal<br>invertebrate feeders | 1.38E-05 | 1.73E-05 | 7.98E-06 | 3.50E-05 | 7.40E-05 |
| 51 | Reef omnivores                          | 5.01E-07 | 1.61E-05 | 6.25E-07 | 5.63E-05 | 7.35E-05 |
| 18 | Sardine-herring-scad                    | 1.29E-08 | 1.24E-08 | 0        | 5.53E-05 | 5.54E-05 |
| 22 | Bluefin tuna                            | 1.78E-08 | 0        | 1.54E-05 | 0        | 1.55E-05 |
| 33 | Goliath grouper                         | 1.90E-06 | 0        | 0        | 0        | 1.90E-06 |
| 46 | Oceanic piscivores                      | 0        | 1.72E-06 | 0        | 0        | 1.72E-06 |
| 52 | Large oceanic sharks                    | 1.23E-07 | 0        | 1.07E-06 | 0        | 1.19E-06 |
| 40 | Yellowedge grouper<br>(3+yr)            | 1.06E-06 | 0        | 0        | 0        | 1.06E-06 |
| 48 | Menhaden (4+yr)                         | 0        | 2.77E-07 | 0        | 0        | 2.77E-07 |
| 19 | Anchovy-silverside-<br>killifish        | 0        | 3.28E-08 | 0        | 0        | 3.28E-08 |
| 37 | Red snapper (0yr)                       | 2.91E-10 | 0        | 0        | 0        | 2.91E-10 |

Table 13-Continued. Recreational catches (t km<sup>-2</sup>) by fishing mode and combined in the 1980 US GoM-wide Ecopath model. Rows have been sorted by highest total landings to lowest total landings.

Table 14. Recreational discards by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model. Rows have been sorted from highest total recreational discards to lowest recreational discards.

| No | Functional group           | Headboat | Shore    | Charter  | Private  | Total    |
|----|----------------------------|----------|----------|----------|----------|----------|
| 47 | Demersal coastal           | 0        | 4.81E-04 | 7.09E-06 | 3.16E-03 | 3.65E-03 |
|    | invertebrate feeders       |          |          |          |          |          |
| 18 | Pelagic coastal piscivores | 0        | 4.58E-04 | 7.15E-05 | 5.13E-04 | 1.04E-03 |
| 42 | Sea trout                  | 0        | 9.87E-05 | 5.22E-06 | 5.93E-04 | 6.97E-04 |
| 9  | Large coastal sharks       | 0        | 2.47E-04 | 1.80E-05 | 2.89E-04 | 5.54E-04 |
| 65 | Butterfish                 | 0        | 5.32E-04 | 0        | 1.26E-06 | 5.34E-04 |
| 46 | Reef invertebrate feeders  | 5.81E-06 | 1.48E-04 | 2.89E-05 | 2.84E-04 | 4.66E-04 |
| 34 | Shallow-water grouper      | 0        | 1.71E-04 | 8.57E-05 | 1.40E-04 | 3.97E-04 |
| 41 | Coastal piscivores         | 0        | 6.01E-05 | 2.41E-04 | 7.60E-05 | 3.77E-04 |
| 62 | Menhaden (4+yr)            | 0        | 2.73E-04 | 2.43E-07 | 0        | 2.73E-04 |
| 6  | Blacktip shark             | 0        | 0        | 3.19E-06 | 2.63E-04 | 2.66E-04 |
| 49 | Benthic coastal            | 0        | 7.64E-05 | 6.21E-06 | 1.58E-04 | 2.41E-04 |
|    | invertebrate feeders       |          |          |          |          |          |
| 52 | Coastal omnivores          | 0        | 1.60E-04 | 1.13E-06 | 6.12E-05 | 2.22E-04 |
| 29 | Red grouper (3+yr)         | 1.45E-05 | 0        | 0        | 1.92E-04 | 2.07E-04 |
| 44 | Benthic piscivores         | 0        | 4.62E-05 | 1.08E-07 | 1.18E-04 | 1.64E-04 |
| 19 | Amberjack                  | 1.08E-06 | 1.64E-05 | 1.16E-04 | 8.78E-06 | 1.42E-04 |
| 25 | Skates-rays                | 0        | 6.81E-05 | 1.68E-06 | 3.92E-05 | 1.09E-04 |
| 8  | Sandbar shark              | 0        | 0        | 8.59E-06 | 9.93E-05 | 1.08E-04 |
| 48 | Red drum                   | 0        | 2.38E-05 | 1.64E-05 | 6.50E-05 | 1.05E-04 |

Table 14-Continued. Recreational discards by fleet (t km<sup>-2</sup>) in the 1980 US GoM-wide Ecopath model and sort from high to low. Rows have been sorted by highest recreational discards to lowest recreational discards.

| No | Functional group         | Headboat | Shore    | Charter  | Private  | Total    |
|----|--------------------------|----------|----------|----------|----------|----------|
| 40 | Other snapper            | 0        | 2.77E-05 | 4.54E-06 | 4.78E-05 | 8.00E-05 |
| 24 | Spanish mackerel (1+yr)  | 9.19E-11 | 2.34E-05 | 1.38E-05 | 4.24E-05 | 7.96E-05 |
| 45 | Reef piscivores          | 0        | 1.60E-06 | 4.45E-05 | 3.24E-05 | 7.85E-05 |
| 16 | Billfish                 | 0        | 0        | 3.66E-06 | 7.07E-05 | 7.44E-05 |
| 26 | Gag grouper (0-3yr)      | 2.38E-06 | 1.51E-05 | 3.90E-06 | 2.79E-05 | 4.93E-05 |
| 51 | Gray triggerfish         | 1.57E-05 | 0        | 1.57E-05 | 1.57E-05 | 4.71E-05 |
| 28 | Red grouper (0-3yr)      | 1.21E-06 | 1.58E-05 | 3.01E-06 | 3.01E-06 | 2.30E-05 |
| 22 | King mackerel (1+yr)     | 0        | 0        | 1.61E-06 | 1.73E-05 | 1.89E-05 |
| 20 | Cobia                    | 8.13E-06 | 4.89E-07 | 0        | 1.01E-05 | 1.87E-05 |
| 64 | Mullet                   | 0        | 1.26E-05 | 0        | 2.32E-06 | 1.49E-05 |
| 57 | Sardine-herring-scad     | 0        | 3.49E-06 | 3.96E-08 | 5.02E-06 | 8.55E-06 |
| 53 | Reef omnivores           | 0        | 3.12E-06 | 0        | 3.12E-06 | 6.24E-06 |
| 39 | Mutton snapper           | 0        | 0        | 5.84E-06 | 0        | 5.84E-06 |
| 15 | Other tunas              | 0        | 0        | 4.37E-06 | 0        | 4.37E-06 |
| 7  | Dusky shark              | 0        | 0        | 0        | 4.15E-06 | 4.15E-06 |
| 27 | Gag grouper (3+yr)       | 5.00E-07 | 0        | 1.04E-06 | 2.25E-06 | 3.79E-06 |
| 38 | Vermilion snapper        | 0        | 0        | 2.69E-06 | 0        | 2.69E-06 |
| 36 | Red snapper (1-2yr)      | 5.65E-08 | 0        | 3.12E-07 | 3.12E-07 | 6.80E-07 |
| 35 | Red snapper (0yr)        | 1.46E-09 | 0        | 5.54E-08 | 5.54E-08 | 1.12E-07 |
| 43 | Oceanic piscivores       | 0        | 0        | 2.56E-08 | 0        | 2.56E-08 |
| 37 | Red snapper (3+yr)       | 3.35E-09 | 0        | 6.88E-09 | 6.88E-09 | 1.71E-08 |
| 32 | Goliath grouper          | 0        | 0        | 2.38E-09 | 0        | 2.38E-09 |
| 23 | Spanish mackerel (0-1yr) | 2.74E-10 | 0        | 0        | 0        | 2.74E-10 |

Table 15. Total landings (t km<sup>-2</sup> yr<sup>-1</sup>), discards (t km<sup>-2</sup> yr<sup>-1</sup>), and catch (landings + discards; t km<sup>-2</sup> yr<sup>-1</sup>) for the US Gulf-wide Ecopath fishing fleets in 1980. The trophic level (*TL*) of the catch is also shown and is discussed further in the results section.

| Fishing fleet         | Landings    | Discards   | Catch  | TL of the |
|-----------------------|-------------|------------|--------|-----------|
|                       | Editolitigo | Disouras   | Outon  | Catch     |
| Commercial            |             |            |        |           |
| Dredge/Dig            | 0.0228      | 0          | 0.0228 | 2.012     |
| Handline              | 0.0230      | 1.0563E-03 | 0.0241 | 3.282     |
| Longline (Fish)       | 0.0098      | 4.7678E-04 | 0.0102 | 3.150     |
| Longline (Pelagic)    | 0.0052      | 9.5361E-05 | 0.0053 | 3.787     |
| Longline (Shark)      | 0.0001      | 2.4989E-05 | 0.0001 | 3.421     |
| Nets                  | 0.0840      | 1.2360E-05 | 0.0840 | 2.673     |
| Other                 | 0.0006      | 0          | 0.0006 | 2.616     |
| Pots and Traps        | 0.0596      | 1.3970E-05 | 0.0596 | 2.697     |
| Purse Seine           | 2.3179      | 6.0000E-06 | 2.3179 | 2.263     |
| (Menhaden)            |             |            |        |           |
| Purse Seine (Other)   | 0.0087      | 0          | 0.0087 | 3.052     |
| Bottom Trawl (Other)  | 0.0297      | 0          | 0.0297 | 2.072     |
| Bottom Trawl (Shrimp) | 0.2512      | 4.3673E-02 | 0.2949 | 2.346     |
| Recreational          |             |            |        |           |
| Headboat              | 0.0042      | 3.3608E-05 | 0.0043 | 3.310     |
| Shore                 | 0.0223      | 2.9624E-03 | 0.0252 | 3.037     |
| Charter               | 0.0160      | 7.1533E-04 | 0.0167 | 3.369     |
| Private               | 0.0623      | 6.3482E-03 | 0.0686 | 3.100     |
| Total                 | 2.9174      | 0.0554     | 2.9727 |           |

Table 16. Sources of time series for catch, biomass, and fishing mortality for each EwE functional group. NOAA refers to catches (landings in weight) from NOAA commercial and recreational sources, as described in the text. For Catch and Biomass, values in parentheses represent the weight assigned to each time series and the type (6 = catches, 61 = relative catches, 0 = relative biomass). Fishing mortality always input as a driver (type = 4).

| No | Functional group           | Catch (C)                                               | Biomass ( <i>B</i> )                 | Fishing mortality (F)         |
|----|----------------------------|---------------------------------------------------------|--------------------------------------|-------------------------------|
| 6  | Blacktip shark             | NOAA (0.5, 6)                                           | SEDAR 29 Update                      | SEDAR 29 Update               |
| 7  | Dusky shark                | NOAA (0.5, 61 -<br>catches deemed<br>unreliable for use | SEDAR 21 Update<br>(1, 0)            | SEDAR 21 Update               |
|    |                            | in assessment)                                          |                                      |                               |
| 8  | Sandbar shark              | NOAA (0.5, 6)                                           | SEDAR 54 (HMS)<br>(1, 0)             | SEDAR 54                      |
| 9  | Large coastal sharks       | NOAA (0.5, 6)                                           | SEDAR 11 (1, 0)                      | -                             |
| 10 | Large oceanic sharks       | NOAA (0.5, 6)                                           | ICCAT 2017a for shortfin mako (1, 0) | ICCAT 2017a for shortfin mako |
| 11 | Atlantic sharpnose shark   | NOAA (0.5, 6)                                           | SEDAR 34 (1, 0)                      | SEDAR 34                      |
| 12 | Small coastal sharks       | NOAA (0.5, 6)                                           | SEDAR 34 for                         | -                             |
| 13 | Yellowfin tuna             | NOAA (1, 6)                                             | Pelagic longline<br>index (1, 0)     | ICCAT 2019                    |
| 14 | Bluefin tuna               | NOAA (1, 6)                                             | Pelagic longline                     | ICCAT 2017c                   |
| 15 | Other tuna                 | NOAA (1, 6)                                             | Pelagic longline                     | -                             |
| 16 | Billfish                   | ICCAT (1, 6)                                            | Pelagic longline                     | ICCAT 2018                    |
| 17 | Swordfish                  | NOAA (1, 61)                                            | Pelagic longline<br>index (9.04, 0)  | ICCAT 2017b                   |
| 18 | Pelagic coastal piscivores | NOAA (1, 6)                                             | SEAMAP Bottom                        | -                             |
| 19 | Amberjacks                 | SEDAR 33                                                | SEDAR 33 Update                      | SEDAR 33 Update               |
| 20 | Cobia                      | SEDAR 28 (2.91,                                         | SEDAR 28 (7.88, 0)                   | SEDAR 28 C/B                  |
| 21 | King mackerel (0-1yr)      | -                                                       | SEDAR 38 (12.29,<br>0)               | -                             |
| 22 | King mackerel (1+yr)       | SEDAR 38<br>(17 73 6)                                   | SEDAR 38 (15.03,<br>0)               | SEDAR 38 <i>C/B</i>           |
| 23 | Spanish mackerel (0-1yr)   | -                                                       | SEDAR 28 (5.11, 0)                   | -                             |
| 24 | Spanish mackerel (1+yr)    | SEDAR 28 (5.71,                                         | SEDAR 28 (10.78,                     | SEDAR 28 C/B                  |
| 25 | Skates-rays                | NOAA (1, 6)                                             | SEAMAP Bottom<br>trawl (2.61. 0)     | -                             |
| 26 | Gag grouper (0-3yr)        | -                                                       | SEDAR 33 Update<br>(15.32, 0)        | -                             |

Table 16-Continued. Sources of time series for catch, biomass, and fishing mortality for each EwE functional group. NOAA refers to catches (landings in weight) from NOAA commercial and recreational sources, as described in the text. For Catch and Biomass, values in parentheses represent the weight assigned to each time series and the type (6 = catches, 61 = relative catches, 0 = relative biomass). Fishing mortality always input as a driver (type = 4).

| No | Functional group              | Catch (C)                    | Biomass ( <i>B</i> )                               | Fishing mortality<br>( <i>F</i> ) |
|----|-------------------------------|------------------------------|----------------------------------------------------|-----------------------------------|
| 27 | Gag grouper (3+yr)            | SEDAR 33 Update<br>(7.41, 6) | SEDAR 33 Update (22.12, 0)                         | SEDAR 33<br>Update <i>C/B</i>     |
| 28 | Red grouper (0-3yr)           | -                            | SEDAR 61 (4.54, 0)                                 | -                                 |
| 29 | Red grouper (3+yr)            | SEDAR 61 (4.98, 6)           | SEDAR 61 (7.23, 0)                                 | SEDAR 61<br>Update <i>C/B</i>     |
| 30 | Yellowedge grouper<br>(0-3vr) | -                            | SEDAR 22 (7.79, 0)                                 | -                                 |
| 31 | Yellowedge grouper<br>(3+vr)  | SEDAR 22 (27.14, 6)          | SEDAR 22 (20.71, 0)                                | SEDAR 22 C/B                      |
| 32 | Goliath grouper               | NOAA (1, 6)                  | SEDAR 47 (13.17, 0)                                | SEDAR 47                          |
| 33 | Deep-water grouper            | NOAA (1, -6)                 | -                                                  | -                                 |
| 34 | Shallow-water<br>grouper      | NOAA (1, -6)                 | SEDAR 49 video<br>index for<br>vellowmouth grouper | -                                 |
|    |                               |                              | (1 0)                                              |                                   |
| 35 | Red snapper (0-1vr)           | -                            | SEDAR 52 (15.87. 0)                                | -                                 |
| 36 | Red snapper (1-2vr)           | SEDAR 52 (20, 61)            | SEDAR 52 (14.57, 0)                                | SEDAR 52 C/B                      |
| 37 | Red snapper (3+vr)            | SEDAR 52 (20, 6)             | SEDAR 52 (13.27, 0)                                | SEDAR 52 C/B                      |
| 38 | Vermilion snapper             | SEDAR 67 (10 24 6)           | SEDAR 67 (21 17 0)                                 | SEDAR 67 C/B                      |
| 30 | Mutton snapper                | SEDAR 15 Undate (1 6)        | SEDAR 15 Undate                                    | SEDAR 15                          |
| 00 | Matton Shapper                |                              | $(13\ 17\ 0)$                                      | Update C/B                        |
| 40 | Other snapper                 | NOAA (1, 6)                  | SEAMAP Bottom                                      | -                                 |
|    |                               | - ()-)                       | trawl (0.69, 0)                                    |                                   |
| 41 | Coastal piscivores            | NOAA (1, 6)                  | -                                                  | -                                 |
| 42 | Seatrout                      | NOAA (1, 6)                  | SEAMAP Bottom                                      | -                                 |
|    |                               |                              | trawl (5.57, 0)                                    |                                   |
| 43 | Oceanic piscivores            | NOAA (1, 6)                  | SEAMAP Bottom                                      | -                                 |
|    |                               |                              | trawl (3.27, 0)                                    |                                   |
| 44 | Benthic piscivores            | NOAA (1, 6)                  | SEAMAP Bottom                                      | -                                 |
| 45 |                               |                              | trawl (14.36, 0)                                   |                                   |
| 45 | Reef piscivores               | NOAA (1, 6)                  | SEAMAP BOTTOM                                      | -                                 |
| 46 | Roof invertebrate             | NOAA (1, 6)                  | SEAMAP Bottom                                      | _                                 |
| 70 | feeders                       | NOAA (1, 0)                  | trawl (9.22_0)                                     |                                   |
| 47 | Demersal coastal              | NOAA (1, 6)                  | SEAMAP Bottom                                      | -                                 |
|    | invertebrate feeders          | / _ /                        | trawl (5.06, 0)                                    |                                   |
| 48 | Red drum                      | SEDAR 49 (1980-2013)         | SEDAR 49 (Dauphin                                  | -                                 |
|    |                               | and NOAA (2014+) (1, -       | Island Sea Lab                                     |                                   |
|    |                               | 6)                           | longline index) (1, 0)                             |                                   |

Table 16-Continued. Sources of time series for catch, biomass, and fishing mortality for each EwE functional group. NOAA refers to catches (landings in weight) from NOAA commercial and recreational sources, as described in the text. For Catch and Biomass, values in parentheses represent the weight assigned to each time series and the type (6 = catches, 61 = relative catches, 0 = relative biomass). Fishing mortality always input as a driver (type = 4).

| No  | Functional group                        | Catch (C)                 | Biomass (B)                    | Fishing mortality (F) |
|-----|-----------------------------------------|---------------------------|--------------------------------|-----------------------|
| 49  | Benthic coastal<br>invertebrate feeders | NOAA (1, 6)               | SEAMAP Bottom trawl (11.37, 0) | -                     |
| 50  | Tilefish                                | NOAA (3.21, 6)            | SEDAR 22 (3.64, 0)             | SEDAR 22 <i>C/B</i>   |
| 51  | Gray triggerfish                        | SEDAR 43 (10.68,<br>6)    | SEDAR 43 (5.74, 0)             | SEDAR 43 C/B          |
| 52  | Coastal omnivores                       | NOAA (1, 6)               | SEAMAP Bottom trawl (10.39, 0) | -                     |
| 53  | Reef omnivores                          | NOAA (1, 6)               | -                              | -                     |
| 54  | Surface pelagics                        | NOAA (1, 6)               | -                              | -                     |
| 55  | Large oceanic<br>planktivores           | -                         | -                              | -                     |
| 56  | Oceanic planktivores                    | NOAA                      | -                              | -                     |
| 57  | Sardine-herring-scad                    | NOAA (1, 6)               | SEAMAP Bottom trawl (3.03, 0)  | -                     |
| 58  | Menhaden (0yr)                          | -                         | SEDAR 63 (1, 0)                | -                     |
| 59  | Menhaden (1yr)                          | SEDAR 63 (5.5,<br>61)     | SEDAR 63 (13.17, 0)            | SEDAR 63 C/B          |
| 60  | Menhaden (2yr)                          | SEDAR 63 (5.5, 6)         | SEDAR 63 (13.17, 0)            | SEDAR 63 <i>C/B</i>   |
| 61  | Menhaden (3yr)                          | SEDAR 63 (5.5,<br>61)     | SEDAR 63 (13.17, 0)            | SEDAR 63 C/B          |
| 62  | Menhaden (4+yr)                         | SEDAR 63 (5.5,<br>61)     | SEDAR 63 (13.17, 0)            | SEDAR 63 C/B          |
| 63  | Anchovies-                              | -                         | SEAMAP Bottom trawl            | -                     |
| ~ . | silversides-killifish                   |                           | (2.74, 0)                      |                       |
| 64  | Mullet                                  | NOAA (1, -6)              | -                              | -                     |
| 65  | Butterfish                              | -                         | SEAMAP Bottom trawl (1.42, 0)  | -                     |
| 66  | Cephalopods                             | -                         | SEAMAP Bottom trawl (4.99, 0)  | -                     |
| 67  | Pink shrimp                             | 2018 Update<br>(0.97, 6)  | 2018 Update (13.17, 0)         | 2018 Update C/B       |
| 68  | Brown shrimp                            | 2018 Update<br>(10.62, 6) | 2018 Update (13.17, 0)         | 2018 Update C/B       |
| 69  | White shrimp                            | 2018 Update<br>(7.98, 6)  | 2018 Update (13.17, 0)         | 2018 Update C/B       |
| 70  | Crab                                    | NOAA (1, 6)               | SEAMAP Bottom trawl (0.55, 0)  | GDAR 01               |
| 71  | Sessile epifauna                        | NOAA                      |                                | -                     |
| 72  | Mobile epifauna                         | NOAA (1, 6)               | SEAMAP Bottom trawl            | -                     |

| Eishing fleet                     | Effort source                                                                  |
|-----------------------------------|--------------------------------------------------------------------------------|
| Commercial Dredge/Dig             | NMFS Vessel Operating Units, sum of gear number (number of dredges)            |
| Commercial Handline               | Number of commercial vertical line trips (SEDAR 49)                            |
| Commercial Longline (Fish)        | Number of commercial bottom longline trips (SEDAR 49)                          |
| Commercial Longline (Pelagic)     | Relative pelagic longline fishery effort (SEDAR 29<br>Update)                  |
| Commercial Longline (Shark)       | Relative bottom longline fishery effort (SEDAR 29<br>Update)                   |
| Commercial Nets                   | NMFS Vessel Operating Units, sum of gear number (number of nets)               |
| Commercial Other                  | NMFS Vessel Operating Units, sum of gear number                                |
| Commercial Pots and Traps         | NMFS Vessel Operating Units, sum of gear number<br>(number in use at one time) |
| Commercial Purse Seine (Menhaden) | Vessel-ton-weeks (SEDAR 63)                                                    |
| Commercial Purse Seine (Other)    | NMFS Vessel Operating Units, sum of gear number<br>(number of nets)            |
| Commercial Bottom Trawl (Other)   | NMFS Vessel Operating Units, sum of gear number (number of nets)               |
| Commercial Bottom Trawl (Shrimp)  | Days fished (SEDAR 52 effort)                                                  |
| Recreational Headboat             | Number of trips (SRHS)                                                         |
| Recreational Shore                | Number of trips (MRIP)                                                         |
| Recreational Charter              | Number of trips (MRIP + TPWD)                                                  |
| Recreational Private              | Number of trips (MRIP + TPWD)                                                  |

Table 17. Source of fishing effort time series for each fishing fleet. Fishing effort always input as a driver (type = 3).

Table 18. Ecopath parameters from the balanced 1980 Ecopath model. *TL* is the trophic level, *B* is the biomass (t km<sup>-2</sup>), *P*/*B* is the ratio of production to biomass (yr<sup>-1</sup>), *Q*/*B* is the ratio of consumption to biomass (yr<sup>-1</sup>), *EE* is the ecotrophic efficiency, *P*/*Q* is the ratio of production to consumption, and *BA* is the biomass accumulation (t km<sup>-2</sup> yr<sup>-1</sup>). Values in italics were estimated by the model.

| No | Functional group           | TL   | В      | Ζ    | P/B  | Q/B  | EE   | P/Q  | BA     | <i>BA</i><br>rate |
|----|----------------------------|------|--------|------|------|------|------|------|--------|-------------------|
| 1  | Coastal dolphins           | 3.44 | 0.0207 |      | 0.16 | 15.0 | 0.82 | 0.01 | 0      | 0                 |
| 2  | Offshore dolphins          | 3.79 | 0.0207 |      | 0.16 | 15.0 | 0.60 | 0.01 | 0      | 0                 |
| 3  | Baleen whales              | 3.47 | 0.0207 |      | 0.16 | 15.0 | 0.07 | 0.01 | 0      | 0                 |
| 4  | Seabird                    | 3.31 | 0.0146 |      | 0.25 | 33.0 | 0.54 | 0.01 | 0      | 0                 |
| 5  | Sea turtle                 | 3.42 | 0.0128 |      | 0.12 | 3.5  | 0.83 | 0.03 | 0      | 0                 |
| 6  | Blacktip shark             | 3.37 | 0.0946 |      | 0.32 | 3.2  | 0.21 | 0.10 | 0      | 0                 |
| 7  | Dusky shark                | 3.75 | 0.0090 |      | 0.28 | 2.8  | 0.26 | 0.10 | 0      | 0                 |
| 8  | Sandbar shark              | 3.64 | 0.0015 |      | 0.34 | 3.2  | 0.69 | 0.11 | 0      | 0                 |
| 9  | Large coastal sharks       | 3.64 | 0.0380 |      | 0.30 | 3.0  | 0.40 | 0.10 | 0      | 0                 |
| 10 | Large oceanic sharks       | 3.61 | 0.0275 |      | 0.29 | 2.7  | 0.28 | 0.11 | 0      | 0                 |
| 11 | Atlantic sharpnose shark   | 3.39 | 0.0195 |      | 0.58 | 5.8  | 0.94 | 0.10 | 0      | 0                 |
| 12 | Small coastal sharks       | 3.47 | 0.0018 |      | 0.50 | 5.0  | 0.97 | 0.10 | 0      | 0                 |
| 13 | Yellowfin tuna             | 3.85 | 0.0028 |      | 1.08 | 8.4  | 0.96 | 0.13 | 0      | 0                 |
| 14 | Bluefin tuna               | 3.71 | 0.0005 |      | 0.43 | 4.3  | 0.80 | 0.10 | 0      | 0                 |
| 15 | Other tunas                | 3.62 | 0.0060 |      | 0.89 | 8.9  | 0.83 | 0.10 | 0      | 0                 |
| 16 | Billfish                   | 3.74 | 0.0030 |      | 0.60 | 4.9  | 0.95 | 0.12 | 0      | 0                 |
| 17 | Swordfish                  | 3.75 | 0.0139 |      | 0.44 | 3.8  | 0.98 | 0.12 | 0      | 0                 |
| 18 | Pelagic coastal piscivores | 3.33 | 0.0617 |      | 0.76 | 6.3  | 0.84 | 0.12 | 0      | 0                 |
| 19 | Amberjack                  | 3.57 | 0.0291 |      | 0.44 | 3.9  | 0.85 | 0.11 | 0      | 0                 |
| 20 | Cobia                      | 3.66 | 0.0111 |      | 0.62 | 4.1  | 0.57 | 0.15 | 0      | 0                 |
| 21 | King mackerel (0-1yr)      | 3.35 | 0.0006 | 1.46 |      | 14.3 | 0.37 | 0.10 | 0      | 0                 |
| 22 | King mackerel (1+yr)       | 3.36 | 0.1400 | 0.22 |      | 3.5  | 0.90 | 0.06 | 0      | 0                 |
| 23 | Spanish mackerel (0-1yr)   | 3.33 | 0.0012 | 2.00 |      | 19.8 | 0.93 | 0.10 | 0.0000 | 0.014             |
| 24 | Spanish mackerel (1+yr)    | 3.54 | 0.0629 | 0.52 |      | 5.2  | 0.74 | 0.10 | 0.0009 | 0.014             |
| 25 | Skates-rays                | 2.88 | 0.0339 |      | 0.48 | 4.8  | 0.93 | 0.10 | 0      | 0                 |
| 26 | Gag grouper (0-3yr)        | 3.40 | 0.0027 | 0.57 |      | 9.3  | 0.82 | 0.06 | 0.0003 | 0.1               |
| 27 | Gag grouper (3+yr)         | 3.47 | 0.0181 | 0.37 |      | 3.6  | 0.93 | 0.10 | 0.0018 | 0.1               |
| 28 | Red grouper (0-3yr)        | 3.38 | 0.0030 | 0.43 |      | 9.2  | 0.79 | 0.05 | 0.0002 | 0.05              |
| 29 | Red grouper (3+yr)         | 3.33 | 0.0267 | 0.37 |      | 3.7  | 0.97 | 0.10 | 0.0013 | 0.05              |
| 30 | Yellowedge grouper (0-3yr) | 3.28 | 0.0002 | 0.32 |      | 18.1 | 0.69 | 0.02 | 0.0000 | 0.01              |
| 31 | Yellowedge grouper (3+yr)  | 3.17 | 0.0483 | 0.10 |      | 3.7  | 0.53 | 0.03 | 0.0005 | 0.01              |
| 32 | Goliath grouper            | 3.59 | 0.0014 |      | 0.33 | 3.3  | 0.93 | 0.10 | 0      | 0                 |
| 33 | Deep-water grouper         | 3.56 | 0.0067 |      | 0.40 | 4.0  | 0.44 | 0.10 | 0      | 0                 |
| 34 | Shallow-water grouper      | 3.48 | 0.0126 |      | 0.62 | 6.2  | 0.85 | 0.10 | 0      | 0                 |
| 35 | Red snapper (0yr)          | 3.38 | 0.0029 | 1.00 |      | 18.4 | 0.47 | 0.05 | 0.0002 | 0.08              |
| 36 | Red snapper (1-2yr)        | 3.42 | 0.0204 | 1.60 |      | 7.9  | 0.17 | 0.20 | 0.0016 | 0.08              |
| 37 | Red snapper (3+yr)         | 3.32 | 0.0423 | 0.33 |      | 3.3  | 0.84 | 0.10 | 0.0034 | 0.08              |

Table 18-Continued. Ecopath parameters from the balanced 1980 Ecopath model. *TL* is the trophic level, *B* is the biomass (t km<sup>-2</sup>), *P*/*B* is the ratio of production to biomass (yr<sup>-1</sup>), *Q*/*B* is the ratio of consumption to biomass (yr<sup>-1</sup>), *EE* is the ecotrophic efficiency, *P*/*Q* is the ratio of production to consumption, and *BA* is the biomass accumulation (t km<sup>-2</sup> yr<sup>-1</sup>). Values in italics were estimated by the model.

| No | Functional group             | TL   | В       | Ζ    | P/B  | Q/B  | EE   | P/Q  | BA     | <i>BA</i><br>rate |
|----|------------------------------|------|---------|------|------|------|------|------|--------|-------------------|
| 38 | Vermilion snapper            | 3.02 | 0.0720  |      | 0.52 | 4.5  | 0.31 | 0.12 | 0      | 0                 |
| 39 | Mutton snapper               | 3.24 | 0.0154  |      | 0.58 | 5.8  | 0.33 | 0.10 | 0      | 0                 |
| 40 | Other snapper                | 3.15 | 0.0136  |      | 0.60 | 6.0  | 0.93 | 0.10 | 0      | 0                 |
| 41 | Coastal piscivores           | 3.13 | 0.0852  |      | 0.67 | 6.5  | 0.96 | 0.10 | 0      | 0                 |
| 42 | Sea trout                    | 3.03 | 0.1076  |      | 0.73 | 7.0  | 0.98 | 0.10 | 0      | 0                 |
| 43 | Oceanic piscivores           | 3.36 | 0.0355  |      | 1.00 | 8.5  | 0.99 | 0.12 | 0      | 0                 |
| 44 | Benthic piscivores           | 3.32 | 0.0265  |      | 0.70 | 5.0  | 0.97 | 0.14 | 0      | 0                 |
| 45 | Reef piscivores              | 3.30 | 0.0250  |      | 0.84 | 5.4  | 0.93 | 0.16 | 0      | 0                 |
| 46 | Reef invertebrate feeders    | 2.80 | 0.1828  |      | 1.05 | 5.8  | 0.90 | 0.18 | 0      | 0                 |
|    | Demersal coastal             |      |         |      |      |      |      |      |        |                   |
| 47 | invertebrate feeders         | 2.81 | 0.2551  |      | 1.00 | 5.9  | 0.90 | 0.17 | 0      | 0                 |
| 48 | Red drum                     | 3.18 | 0.1145  |      | 0.50 | 5.0  | 0.35 | 0.10 | 0      | 0                 |
| 40 | Benthic coastal invertebrate | 0.00 | 0.4700  |      | 4.05 | 5.0  | 0.07 | 0.00 | 0      | 0                 |
| 49 |                              | 2.80 | 0.1700  |      | 1.25 | 5.8  | 0.97 | 0.22 | 0      | 0                 |
| 50 |                              | 3.27 | 0.0070  |      | 0.35 | 3.5  | 0.27 | 0.10 | 0      | 0                 |
| 51 | Gray triggerfish             | 2.79 | 0.0547  |      | 0.59 | 5.9  | 0.38 | 0.10 | 0      | 0                 |
| 52 | Coastal omnivores            | 2.73 | 0.1650  |      | 0.88 | 8.8  | 0.99 | 0.10 | 0      | 0                 |
| 53 | Reef omnivores               | 2.68 | 0.0200  |      | 1.40 | 8.4  | 0.95 | 0.17 | 0      | 0                 |
| 54 | Surface pelagics             | 2.86 | 0.1250  |      | 1.45 | 11.7 | 0.91 | 0.12 | 0      | 0                 |
| 55 | Large oceanic planktivores   | 3.22 | 0.0174  |      | 0.16 | 1.3  | 0.38 | 0.12 | 0      | 0                 |
| 56 | Oceanic planktivores         | 3.16 | 0.0450  |      | 0.87 | 8.7  | 0.94 | 0.10 | 0      | 0                 |
| 57 | Sardine-herring-scad         | 2.77 | 0.6300  |      | 1.05 | 10.5 | 0.91 | 0.10 | 0      | 0                 |
| 58 | Menhaden (0yr)               | 2.25 | 1.8929  | 1.67 |      | 42.9 | 0.04 | 0.04 | 0.6246 | 0.33              |
| 59 | Menhaden (1yr)               | 2.25 | 4.4136  | 1.51 |      | 22.0 | 0.15 | 0.07 | 1.4565 | 0.33              |
| 60 | Menhaden (2yr)               | 2.25 | 2.0070  | 1.73 |      | 15.4 | 0.43 | 0.11 | 0.6623 | 0.33              |
| 61 | Menhaden (3yr)               | 2.25 | 0.4956  | 1.52 |      | 12.7 | 0.45 | 0.12 | 0.1635 | 0.33              |
| 62 | Menhaden (4+yr)              | 2.25 | 0.1433  | 1.42 |      | 11.1 | 0.46 | 0.13 | 0.0473 | 0.33              |
| 63 | Anchovy-silverside-killifish | 2.62 | 0.7050  |      | 1.59 | 15.9 | 0.84 | 0.10 | 0      | 0                 |
| 64 | Mullet                       | 2.41 | 0.2870  |      | 0.80 | 8.0  | 0.60 | 0.10 | 0      | 0                 |
| 65 | Butterfish                   | 2.76 | 0.0730  |      | 1.36 | 8.1  | 0.98 | 0.17 | 0      | 0                 |
| 66 | Cephalopod                   | 2.97 | 1.0000  |      | 2.80 | 13.7 | 0.82 | 0.20 | 0      | 0                 |
| 67 | Pink shrimp                  | 2.43 | 0.0800  |      | 3.77 | 19.2 | 0.41 | 0.20 | 0      | 0                 |
| 68 | Brown shrimp                 | 2.06 | 0.0607  |      | 5.22 | 19.2 | 0.64 | 0.27 | 0      | 0                 |
| 69 | White shrimp                 | 2.05 | 0.5000  |      | 3.32 | 19.2 | 0.18 | 0.17 | 0      | 0                 |
| 70 | Crab                         | 2.86 | 0.2500  |      | 1.60 | 10.5 | 0.94 | 0.15 | 0      | 0                 |
| 71 | Sessile epifauna             | 2.01 | 12.0000 |      | 1.60 | 9.0  | 0.63 | 0.18 | 0      | 0                 |
| 72 | Mobile epifauna              | 2.13 | 18.0000 |      | 2.60 | 16.0 | 0.35 | 0.16 | 0      | 0                 |

Table 18-Continued. Ecopath parameters from the balanced 1980 Ecopath model. *TL* is the trophic level, *B* is the biomass (t km<sup>-2</sup>), *P*/*B* is the ratio of production to biomass (yr<sup>-1</sup>), *Q*/*B* is the ratio of consumption to biomass (yr<sup>-1</sup>), *EE* is the ecotrophic efficiency, *P*/*Q* is the ratio of production to consumption, and *BA* is the biomass accumulation (t km<sup>-2</sup> yr<sup>-1</sup>). Values in italics were estimated by the model.

| No | Functional group | TL   | В        | Ζ | P/B    | Q/B  | EE   | P/Q  | BA | BA rate |
|----|------------------|------|----------|---|--------|------|------|------|----|---------|
| 73 | Zooplankton      | 2.05 | 15.0000  |   | 10.00  | 74.0 | 0.72 | 0.14 | 0  | 0       |
| 74 | Infauna          | 2.04 | 18.5000  |   | 5.17   | 22.0 | 0.49 | 0.24 | 0  | 0       |
| 75 | Algae            | 1.00 | 29.8000  |   | 27.50  | 0.0  | 0.07 |      | 0  | 0       |
| 76 | Seagrass         | 1.00 | 150.0000 |   | 25.00  | 0.0  | 0.01 |      | 0  | 0       |
| 77 | Phytoplankton    | 1.00 | 25.0000  |   | 160.00 | 0.0  | 0.30 |      | 0  | 0       |
| 78 | Detritus         | 1.00 | 100.0000 |   |        |      | 0.09 |      | 0  | 0       |

Table 19. Predator prey ratios for biomass (t km<sup>-2</sup>) and vital rates (P/B, Q/B, R/B, yr<sup>-1</sup>) for model diagnostics of the US Gulf-wide Ecopath model. Parameters are as defined in Table 18 and Guilds are as defined in Table 1.

| Guild                                                                | В    | P/B  | Q/B  | R/B  |
|----------------------------------------------------------------------|------|------|------|------|
| Demersal / Benthic invertebrates (D/BI)                              | 0.03 | 0.20 | 0.39 | 0.46 |
| Demersal and Medium pelagic<br>piscivores / Small pelagics (DMPP/SP) | 0.06 | 0.48 | 0.48 | 0.47 |
| Marine mammals and birds / Small<br>Pelagics (MMB/SP)                | 0.01 | 0.12 | 1.25 | 1.41 |
| Planktivores / Zooplankton (PLK/ZOO)                                 | 0.04 | 0.05 | 0.07 | 0.07 |
| Sharks / Small pelagics (S and H/SP)                                 | 0.02 | 0.33 | 0.29 | 0.29 |
| Small pelagics / Zooplankton (SP/ZOO)                                | 0.70 | 0.15 | 0.21 | 0.22 |
| Small pelagics / Phytoplankton<br>(SP/PHY)                           | 0.42 | 0.01 | -    | -    |
| Zooplankton / Phytoplankton (ZOO/PHY)                                | 0.60 | 0.06 | -    | -    |

Table 20. Estimates of group biomass relative to primary producers (*B*/PP), production relative to primary producers (*P*/PP), *P*/*B* (or *Z*) relative to primary producers ((*P*/*B*)/PP), the ratio of the predation losses of each functional group to its production ( $Q_{oftaxa}/P_{bytaxa}$ ;, equivalent to *M*2/*Z*), the ratio of the consumption by each functional group to its production ( $Q_{bytaxa}/P_{bytaxa}$ , equivalent to the inverse of *P*/*Q*).

| No | Functional group           | <i>B</i> /PP | <i>P</i> /PP | <i>(P/B)/</i> PP | Qoftaxa/Pbytaxa | Q <sub>bytaxa</sub> /P <sub>bytaxa</sub> |
|----|----------------------------|--------------|--------------|------------------|-----------------|------------------------------------------|
| 1  | Coastal dolphins           | 1.01E-04     | 1.16E-06     | 0.002            | 0.819           | 93.75                                    |
| 2  | Offshore dolphins          | 1.01E-04     | 1.16E-06     | 0.002            | 0.604           | 93.75                                    |
| 3  | Baleen whales              | 1.01E-04     | 1.16E-06     | 0.002            | 0.067           | 93.75                                    |
| 4  | Seabird                    | 7.13E-05     | 1.28E-06     | 0.004            | 0.537           | 132                                      |
| 5  | Sea turtle                 | 6.25E-05     | 5.38E-07     | 0.002            | 0.834           | 29.167                                   |
| 6  | Blacktip shark             | 4.62E-04     | 1.07E-05     | 0.005            | 0.185           | 9.907                                    |
| 7  | Dusky shark                | 4.39E-05     | 8.82E-07     | 0.004            | 0.162           | 10                                       |
| 8  | Sandbar shark              | 7.32E-06     | 1.79E-07     | 0.005            | 0.208           | 9.412                                    |
| 9  | Large coastal sharks       | 1.86E-04     | 3.99E-06     | 0.004            | 0.303           | 10                                       |
| 10 | Large oceanic sharks       | 1.34E-04     | 2.77E-06     | 0.004            | 0.275           | 9.375                                    |
| 11 | Atlantic sharpnose shark   | 9.52E-05     | 3.96E-06     | 0.008            | 0.293           | 10                                       |
| 12 | Small coastal sharks       | 8.79E-06     | 3.15E-07     | 0.007            | 0.671           | 10                                       |
| 13 | Yellowfin tuna             | 1.37E-05     | 1.06E-06     | 0.015            | 0.218           | 7.778                                    |
| 14 | Bluefin tuna               | 2.44E-06     | 7.53E-08     | 0.006            | 0.545           | 10                                       |
| 15 | Other tunas                | 2.93E-05     | 1.87E-06     | 0.013            | 0.201           | 10                                       |
| 16 | Billfish                   | 1.46E-05     | 6.30E-07     | 0.008            | 0.105           | 8.167                                    |
| 17 | Swordfish                  | 6.79E-05     | 2.14E-06     | 0.006            | 0.083           | 8.636                                    |
| 18 | Pelagic coastal piscivores | 3.01E-04     | 1.64E-05     | 0.011            | 0.486           | 8.289                                    |
| 19 | Amberjack                  | 1.42E-04     | 4.46E-06     | 0.006            | 0.360           | 8.904                                    |
| 20 | Cobia                      | 5.42E-05     | 2.41E-06     | 0.009            | 0.240           | 6.613                                    |
| 21 | King mackerel (0-1yr)      | 2.97E-06     | 3.11E-07     | 0.021            | 0.286           | 9.816                                    |
| 22 | King mackerel (1+yr)       | 6.84E-04     | 1.07E-05     | 0.003            | 0.593           | 16.055                                   |
| 23 | Spanish mackerel (0-1yr)   | 5.71E-06     | 8.18E-07     | 0.028            | 0.242           | 9.886                                    |
| 24 | Spanish mackerel (1+yr)    | 3.07E-04     | 1.14E-05     | 0.007            | 0.366           | 10                                       |
| 25 | Skates-rays                | 1.66E-04     | 5.70E-06     | 0.007            | 0.902           | 10                                       |
| 26 | Gag grouper (0-3yr)        | 1.32E-05     | 5.38E-07     | 0.008            | 0.399           | 16.251                                   |
| 27 | Gag grouper (3+yr)         | 8.84E-05     | 2.34E-06     | 0.005            | 0.264           | 9.73                                     |
| 28 | Red grouper (0-3yr)        | 1.48E-05     | 4.56E-07     | 0.006            | 0.772           | 21.29                                    |
| 29 | Red grouper (3+yr)         | 1.30E-04     | 3.46E-06     | 0.005            | 0.225           | 10                                       |
| 30 | Yellowedge grouper (0-3yr) | 8.82E-07     | 2.02E-08     | 0.005            | 0.692           | 56.469                                   |
| 31 | Yellowedge grouper (3+yr)  | 2.36E-04     | 1.69E-06     | 0.001            | 0.265           | 37                                       |
| 32 | Goliath grouper            | 6.84E-06     | 1.62E-07     | 0.005            | 0.287           | 10                                       |
| 33 | Deep-water grouper         | 3.27E-05     | 9.38E-07     | 0.006            | 0.096           | 10                                       |
| 34 | Shallow-water grouper      | 6.15E-05     | 2.73E-06     | 0.009            | 0.272           | 10                                       |
| 35 | Red snapper (0yr)          | 1.43E-05     | 1.03E-06     | 0.014            | 0.162           | 18.43                                    |

Table 20-Continued. Estimates of group biomass relative to primary producers (*B*/PP), production relative to primary producers (*P*/PP), *P*/*B* (or *Z*) relative to primary producers ((*P*/*B*)/PP), the ratio of the predation losses of each functional group to its production ( $Q_{oftaxa}/P_{bytaxa}$ , equivalent to *M*2/*Z*), the ratio of the consumption by each functional group to its production ( $Q_{bytaxa}/P_{bytaxa}$ , equivalent to the inverse of *P*/*Q*).

| No | Functional group             | <i>B</i> /PP | <i>P</i> /PP | <i>(P/B)/</i> PP | Q <sub>oftaxa</sub> /P <sub>bytaxa</sub> | Q <sub>bytaxa</sub> /P <sub>bytaxa</sub> |
|----|------------------------------|--------------|--------------|------------------|------------------------------------------|------------------------------------------|
| 36 | Red snapper (1-2yr)          | 9.95E-05     | 1.14E-05     | 0.023            | 0.099                                    | 4.963                                    |
| 37 | Red snapper (3+yr)           | 2.07E-04     | 4.89E-06     | 0.005            | 0.072                                    | 10                                       |
| 38 | Vermilion snapper            | 3.52E-04     | 1.31E-05     | 0.007            | 0.236                                    | 8.654                                    |
| 39 | Mutton snapper               | 7.52E-05     | 3.13E-06     | 0.008            | 0.230                                    | 10                                       |
| 40 | Other snapper                | 6.64E-05     | 2.86E-06     | 0.008            | 0.653                                    | 10                                       |
| 41 | Coastal piscivores           | 4.16E-04     | 2.00E-05     | 0.009            | 0.626                                    | 9.701                                    |
| 42 | Sea trout                    | 5.25E-04     | 2.75E-05     | 0.010            | 0.342                                    | 9.589                                    |
| 43 | Oceanic piscivores           | 1.73E-04     | 1.24E-05     | 0.014            | 0.980                                    | 8.5                                      |
| 44 | Benthic piscivores           | 1.29E-04     | 6.49E-06     | 0.010            | 0.848                                    | 7.143                                    |
| 45 | Reef piscivores              | 1.22E-04     | 7.35E-06     | 0.012            | 0.692                                    | 6.429                                    |
| 46 | Reef invertebrate feeders    | 8.93E-04     | 6.72E-05     | 0.015            | 0.826                                    | 5.524                                    |
| 47 | Demersal coastal             | 1.25E-03     | 8.93E-05     | 0.014            | 0.607                                    | 5.9                                      |
|    | invertebrate feeders         |              |              |                  |                                          |                                          |
| 48 | Red drum                     | 5.59E-04     | 2.00E-05     | 0.007            | 0.130                                    | 10                                       |
| 49 | Benthic coastal              | 8.30E-04     | 7.44E-05     | 0.018            | 0.962                                    | 4.64                                     |
|    | invertebrate feeders         |              |              |                  |                                          |                                          |
| 50 | Tilefish                     | 3.42E-05     | 8.58E-07     | 0.005            | 0.146                                    | 10                                       |
| 51 | Gray triggerfish             | 2.67E-04     | 1.13E-05     | 0.008            | 0.140                                    | 10                                       |
| 52 | Coastal omnivores            | 8.06E-04     | 5.08E-05     | 0.012            | 0.967                                    | 10                                       |
| 53 | Reef omnivores               | 9.77E-05     | 9.80E-06     | 0.020            | 0.945                                    | 6                                        |
| 54 | Surface pelagics             | 6.10E-04     | 6.35E-05     | 0.020            | 0.912                                    | 8.069                                    |
| 55 | Large oceanic planktivores   | 8.50E-05     | 9.75E-07     | 0.002            | 0.375                                    | 8.125                                    |
| 56 | Oceanic planktivores         | 2.20E-04     | 1.37E-05     | 0.012            | 0.941                                    | 10                                       |
| 57 | Sardine-herring-scad         | 3.08E-03     | 2.32E-04     | 0.015            | 0.901                                    | 10                                       |
| 58 | Menhaden (0yr)               | 9.24E-03     | 1.11E-03     | 0.024            | 0.034                                    | 25.671                                   |
| 59 | Menhaden (1yr)               | 2.16E-02     | 2.33E-03     | 0.021            | 0.039                                    | 14.552                                   |
| 60 | Menhaden (2yr)               | 9.80E-03     | 1.21E-03     | 0.024            | 0.063                                    | 8.92                                     |
| 61 | Menhaden (3yr)               | 2.42E-03     | 2.64E-04     | 0.021            | 0.162                                    | 8.338                                    |
| 62 | Menhaden (4+yr)              | 7.00E-04     | 7.11E-05     | 0.020            | 0.298                                    | 7.867                                    |
| 63 | Anchovy-silverside-killifish | 3.44E-03     | 3.92E-04     | 0.022            | 0.844                                    | 10                                       |
| 64 | Mullet                       | 1.40E-03     | 8.04E-05     | 0.011            | 0.402                                    | 10                                       |
| 65 | Butterfish                   | 3.56E-04     | 3.48E-05     | 0.019            | 0.963                                    | 5.956                                    |
| 66 | Cephalopod                   | 4.88E-03     | 9.80E-04     | 0.040            | 0.815                                    | 4.893                                    |

Table 20-Continued. Estimates of group biomass relative to primary producers (*B*/PP), production relative to primary producers (*P*/PP), *P*/*B* (or *Z*) relative to primary producers ((*P*/*B*)/PP), the ratio of the predation losses of each functional group to its production ( $Q_{oftaxa}/P_{bytaxa}$ , equivalent to *M*2/*Z*), the ratio of the consumption by each functional group to its production ( $Q_{bytaxa}/P_{bytaxa}$ , equivalent to the inverse of *P*/*Q*).

| No | Functional group | <i>B</i> /PP | <i>P</i> /PP | <i>(P/B)/</i> PP | Q <sub>oftaxa</sub> /P <sub>bytaxa</sub> | Q <sub>bytaxa</sub> /P <sub>bytaxa</sub> |
|----|------------------|--------------|--------------|------------------|------------------------------------------|------------------------------------------|
| 67 | Pink shrimp      | 3.91E-04     | 1.06E-04     | 0.053            | 0.318                                    | 5.093                                    |
| 68 | Brown shrimp     | 2.96E-04     | 1.11E-04     | 0.074            | 0.228                                    | 3.678                                    |
| 69 | White shrimp     | 2.44E-03     | 5.81E-04     | 0.047            | 0.143                                    | 5.783                                    |
| 70 | Crab             | 1.22E-03     | 1.40E-04     | 0.023            | 0.783                                    | 6.562                                    |
| 71 | Sessile epifauna | 5.86E-02     | 6.72E-03     | 0.023            | 0.624                                    | 5.625                                    |
| 72 | Mobile epifauna  | 8.79E-02     | 1.64E-02     | 0.037            | 0.354                                    | 6.154                                    |
| 73 | Zooplankton      | 7.32E-02     | 5.25E-02     | 0.141            | 0.725                                    | 7.4                                      |
| 74 | Infauna          | 9.03E-02     | 3.35E-02     | 0.073            | 0.489                                    | 4.255                                    |
| 75 | Algae            | -            | -            | 0.388            | 0.075                                    | NA                                       |
| 76 | Seagrass         | -            | -            | 0.353            | 0.006                                    | NA                                       |
| 77 | Phytoplankton    | -            | -            | 2.259            | 0.3                                      | NA                                       |

| Table 21. Estimates of fishing (F), predation (M2), and other (M0) mortality rates. Also   |
|--------------------------------------------------------------------------------------------|
| shown is the ratio of F/Z, F/M2, and the ratio of total fishing removals to consumption of |
| taxa (Catch/Q).                                                                            |

| No | Functional group           | F     | М2    | МО    | F/Z   | F/M2   | Catch/Q |
|----|----------------------------|-------|-------|-------|-------|--------|---------|
| 1  | Coastal dolphins           | 0     | 0.131 | 0.029 | 0     | 0      | 0       |
| 2  | Offshore dolphins          | 0     | 0.097 | 0.063 | 0     | 0      | 0       |
| 3  | Baleen whales              | 0     | 0.011 | 0.149 | 0     | 0      | 0       |
| 4  | Seabird                    | 0     | 0.134 | 0.116 | 0     | 0      | 0       |
| 5  | Sea turtle                 | 0     | 0.100 | 0.020 | 0     | 0      | 0       |
| 6  | Blacktip shark             | 0.010 | 0.060 | 0.254 | 0.030 | 0.160  | 0.003   |
| 7  | Dusky shark                | 0.028 | 0.045 | 0.207 | 0.099 | 0.612  | 0.010   |
| 8  | Sandbar shark              | 0.164 | 0.071 | 0.105 | 0.482 | 2.314  | 0.051   |
| 9  | Large coastal sharks       | 0.030 | 0.091 | 0.179 | 0.100 | 0.329  | 0.010   |
| 10 | Large oceanic sharks       | 0     | 0.079 | 0.209 | 0     | 0.001  | 0       |
| 11 | Atlantic sharpnose shark   | 0.377 | 0.170 | 0.033 | 0.650 | 2.215  | 0.065   |
| 12 | Small coastal sharks       | 0.147 | 0.336 | 0.017 | 0.294 | 0.438  | 0.029   |
| 13 | Yellowfin tuna             | 0.797 | 0.235 | 0.048 | 0.738 | 3.386  | 0.095   |
| 14 | Bluefin tuna               | 0.110 | 0.234 | 0.086 | 0.255 | 0.468  | 0.026   |
| 15 | Other tunas                | 0.562 | 0.179 | 0.149 | 0.631 | 3.140  | 0.063   |
| 16 | Billfish                   | 0.505 | 0.063 | 0.033 | 0.841 | 8.037  | 0.103   |
| 17 | Swordfish                  | 0.396 | 0.037 | 0.007 | 0.900 | 10.800 | 0.104   |
| 18 | Pelagic coastal piscivores | 0.268 | 0.369 | 0.123 | 0.353 | 0.726  | 0.043   |
| 19 | Amberjack                  | 0.214 | 0.158 | 0.066 | 0.489 | 1.358  | 0.055   |
| 20 | Cobia                      | 0.207 | 0.149 | 0.264 | 0.334 | 1.394  | 0.051   |
| 21 | King mackerel (0-1yr)      | 0.121 | 0.418 | 0.921 | 0.083 | 0.290  | 0.008   |
| 22 | King mackerel (1+yr)       | 0.067 | 0.129 | 0.022 | 0.307 | 0.517  | 0.019   |
| 23 | Spanish mackerel (0-1yr)   | 1.371 | 0.483 | 0.146 | 0.685 | 2.836  | 0.069   |
| 24 | Spanish mackerel (1+yr)    | 0.194 | 0.189 | 0.134 | 0.375 | 1.023  | 0.037   |
| 25 | Skates-rays                | 0.016 | 0.433 | 0.032 | 0.033 | 0.036  | 0.003   |
| 26 | Gag grouper (0-3yr)        | 0.243 | 0.227 | 0.100 | 0.426 | 1.070  | 0.026   |
| 27 | Gag grouper (3+yr)         | 0.245 | 0.098 | 0.027 | 0.663 | 2.509  | 0.068   |
| 28 | Red grouper (0-3yr)        | 0.008 | 0.332 | 0.090 | 0.018 | 0.023  | 0.001   |
| 29 | Red grouper (3+yr)         | 0.277 | 0.083 | 0.010 | 0.749 | 3.325  | 0.075   |
| 30 | Yellowedge grouper (0-3yr) | 0     | 0.221 | 0.099 | 0     | 0      | 0       |
| 31 | Yellowedge grouper (3+yr)  | 0.026 | 0.027 | 0.047 | 0.264 | 0.996  | 0.007   |
| 32 | Goliath grouper            | 0.212 | 0.095 | 0.023 | 0.641 | 2.231  | 0.064   |
| 33 | Deep-water grouper         | 0.137 | 0.039 | 0.225 | 0.342 | 3.548  | 0.034   |
| 34 | Shallow-water grouper      | 0.358 | 0.168 | 0.094 | 0.577 | 2.124  | 0.058   |
| 35 | Red snapper (0yr)          | 0.310 | 0.162 | 0.527 | 0.310 | 1.913  | 0.017   |
| 36 | Red snapper (1-2yr)        | 0.111 | 0.158 | 1.331 | 0.069 | 0.700  | 0.014   |
| 37 | Red snapper (3+yr)         | 0.255 | 0.024 | 0.051 | 0.773 | 10.730 | 0.077   |
| 38 | Vermilion snapper          | 0.040 | 0.123 | 0.357 | 0.077 | 0.325  | 0.009   |

Table 21-Continued. Estimates of fishing (*F*), predation (*M*2), and other (*M0*) mortality rates. Also shown is the ratio of F/Z, F/M2, and the ratio of total fishing removals to consumption of taxa (Catch/Q).

| No | Functional group                      | F     | М2    | MO    | F/Z   | F/M2  | Catch/Q |
|----|---------------------------------------|-------|-------|-------|-------|-------|---------|
| 39 | Mutton snapper                        | 0.059 | 0.133 | 0.388 | 0.101 | 0.441 | 0.010   |
| 40 | Other snapper                         | 0.168 | 0.392 | 0.040 | 0.280 | 0.429 | 0.028   |
| 41 | Coastal piscivores                    | 0.227 | 0.420 | 0.024 | 0.338 | 0.540 | 0.035   |
| 42 | Sea trout                             | 0.465 | 0.250 | 0.015 | 0.637 | 1.863 | 0.066   |
| 43 | Oceanic piscivores                    | 0.010 | 0.980 | 0.009 | 0.010 | 0.011 | 0.001   |
| 44 | Benthic piscivores                    | 0.088 | 0.593 | 0.019 | 0.125 | 0.148 | 0.018   |
| 45 | Reef piscivores                       | 0.202 | 0.581 | 0.057 | 0.241 | 0.348 | 0.037   |
| 46 | Reef invertebrate feeders             | 0.078 | 0.867 | 0.105 | 0.075 | 0.091 | 0.014   |
| 47 | Demersal coastal invertebrate feeders | 0.294 | 0.607 | 0.099 | 0.294 | 0.484 | 0.050   |
| 48 | Red drum                              | 0.111 | 0.065 | 0.324 | 0.222 | 1.704 | 0.022   |
| 49 | Benthic coastal invertebrate feeders  | 0.003 | 1.203 | 0.044 | 0.003 | 0.003 | 0.001   |
| 50 | Tilefish                              | 0.044 | 0.051 | 0.254 | 0.127 | 0.867 | 0.013   |
| 51 | Gray triggerfish                      | 0.144 | 0.082 | 0.364 | 0.245 | 1.749 | 0.024   |
| 52 | Coastal omnivores                     | 0.018 | 0.851 | 0.011 | 0.020 | 0.021 | 0.002   |
| 53 | Reef omnivores                        | 0.004 | 1.323 | 0.073 | 0.003 | 0.003 | 0       |
| 54 | Surface pelagics                      | 0.003 | 1.322 | 0.125 | 0.002 | 0.002 | 0       |
| 55 | Large oceanic planktivores            | 0     | 0.060 | 0.100 | 0     | 0     | 0       |
| 56 | Oceanic planktivores                  | 0     | 0.818 | 0.052 | 0     | 0     | 0       |
| 57 | Sardine-herring-scad                  | 0.012 | 0.946 | 0.092 | 0.012 | 0.013 | 0.001   |
| 58 | Menhaden (0yr)                        | 0.001 | 0.057 | 1.612 | 0.001 | 0.022 | 0       |
| 59 | Menhaden (1yr)                        | 0.172 | 0.059 | 1.277 | 0.114 | 2.900 | 0.008   |
| 60 | Menhaden (2yr)                        | 0.626 | 0.108 | 0.993 | 0.362 | 5.787 | 0.041   |
| 61 | Menhaden (3yr)                        | 0.436 | 0.246 | 0.838 | 0.287 | 1.768 | 0.034   |
| 62 | Menhaden (4+yr)                       | 0.223 | 0.423 | 0.771 | 0.158 | 0.528 | 0.020   |
| 63 | Anchovy-silverside-killifish          | 0     | 1.342 | 0.248 | 0     | 0     | 0       |
| 64 | Mullet                                | 0.157 | 0.321 | 0.322 | 0.196 | 0.487 | 0.020   |
| 65 | Butterfish                            | 0.023 | 1.310 | 0.026 | 0.017 | 0.018 | 0.003   |
| 66 | Cephalopod                            | 0     | 2.283 | 0.517 | 0     | 0     | 0       |
| 67 | Pink shrimp                           | 0.336 | 1.198 | 2.236 | 0.089 | 0.281 | 0.018   |
| 68 | Brown shrimp                          | 2.152 | 1.191 | 1.878 | 0.412 | 1.807 | 0.112   |
| 69 | White shrimp                          | 0.130 | 0.473 | 2.716 | 0.039 | 0.276 | 0.007   |
| 70 | Crab                                  | 0.256 | 1.253 | 0.091 | 0.160 | 0.204 | 0.024   |
| 71 | Sessile epifauna                      | 0.002 | 0.998 | 0.600 | 0.001 | 0.002 | 0       |
| 72 | Mobile epifauna                       | 0.002 | 0.920 | 1.679 | 0.001 | 0.002 | 0       |
| 73 | Zooplankton                           | 0     | 7.246 | 2.754 | 0     | 0     | 0       |

Table 21-Continued. Estimates of fishing (*F*), predation (*M*2), and other (*M*0) mortality rates. Also shown is the ratio of F/Z, F/M2, and the ratio of total fishing removals to consumption of taxa (Catch/Q).

| No | Functional group | F | М2     | МО     | F/Z | F/M2 | Catch/Q |
|----|------------------|---|--------|--------|-----|------|---------|
| 74 | Infauna          | 0 | 2.528  | 2.642  | 0   | 0    | 0       |
| 75 | Algae            | 0 | 2.049  | 25.451 | 0   | 0    | NA      |
| 76 | Seagrass         | 0 | 0.162  | 24.838 | 0   | 0    | NA      |
| 77 | Phytoplankton    | 0 | 48.079 | 111.92 | 0   | 0    | NA      |

Table 22. Ecosystem summary statistics, flows, and ecological indicators for the US Gulf-wide Ecopath model compared to other Ecopath models in the GoM and other LMEs worldwide (modified after Table 5 in Sagarese *et al.*, 2017).

| Metric                                                               | US Gulf-<br>wide<br>(Current<br>model) | GoM<br>(Sagarese<br><i>et al.,</i><br>2017) | GoM<br>(Walters<br><i>et al.,</i><br>2008) | GoM<br>(Geers<br><i>et al.,</i><br>2016) | GoM<br>(WFS)<br>(Chagaris<br><i>et al.,</i><br>2015) | Gulf of<br>California<br>(Arreguin-<br>Sánchez <i>et</i><br><i>al.</i> , 2002) | Peru<br>(Tam<br><i>et al.</i> ,<br>2008) | British<br>Columbia<br>(Ainsworth<br><i>et al.</i> , 2002) |
|----------------------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|
| Ecopath year                                                         | 1980                                   | 2005-<br>2009                               | 2004                                       | 2009                                     | 2009                                                 | 1978-<br>1979                                                                  | 1995-<br>1998                            | 2000                                                       |
| Number of biomass pools                                              | 78                                     | 75                                          | 31                                         | 47                                       | 70                                                   | 27                                                                             | 33                                       | 44                                                         |
| Sum of consumption (t km <sup>-2</sup> yr <sup>-1</sup> )            | 2,194                                  | 1,908                                       | 2,707                                      | 2,164                                    | 16,613                                               | 2,208                                                                          | 28,478                                   | 2,172                                                      |
| Sum of exports<br>(t km <sup>-2</sup> yr <sup>-1</sup> )             | 7,440                                  | 7,530                                       | 5,897                                      | 6,075                                    | 1,750                                                | 66.4                                                                           | 2,004                                    | 1,434                                                      |
| Sum of respiratory flows (t km <sup>-2</sup> yr <sup>-1</sup> )      | 1,131                                  | 1,046                                       | 998                                        | 806                                      | 5,229                                                | 1,664.2                                                                        | 14,688                                   | 1,344                                                      |
| Sum of flows into detritus<br>(t km <sup>-2</sup> yr <sup>-1</sup> ) | 8,151                                  | 8,078                                       | 6,655                                      | 6,623                                    | 18,591                                               | 284                                                                            | 10,519                                   | 2,619                                                      |
| Total system throughput<br>(t km <sup>-2</sup> yr <sup>-1</sup> )    | 18,918                                 | 18,563                                      | 16,257                                     | 15,668                                   | 42,184                                               | 4,224                                                                          | 23,847                                   | 7,570                                                      |
| Sum of production<br>(t km <sup>-2</sup> yr <sup>-1</sup> )          | 8,905                                  | 9,050                                       | 7,610                                      | 7,472                                    | 13,831                                               | 2,269                                                                          | 16,653                                   | 3,171                                                      |
| Mean TL of catch                                                     | 2.3                                    | 2.8                                         | 2.9                                        | 2.6                                      | 3.5                                                  | 2.9                                                                            | 2.6                                      | 3.3                                                        |
| Total PP/total respiration                                           | 7.6                                    | 8.0                                         | 7.0                                        | 9.0                                      | 1.0                                                  | 1.0                                                                            | 1.1                                      | 2.1                                                        |
| Net system production<br>(t km <sup>-2</sup> yr <sup>-1</sup> )      | 7,438                                  | 7,523                                       | 5,883                                      | 6,075                                    | 1,755                                                | 1,728                                                                          | 1,965                                    | 1,433                                                      |

Table 22-Continued. Ecosystem summary statistics, flows, and ecological indicators for the US Gulf-wide Ecopath model compared to other Ecopath models in the GoM and other LMEs worldwide (modified after Table 5 in Sagarese *et al.*, 2017).

| Metric                                                | US Gulf-<br>wide<br>(Current<br>model) | GoM<br>(Sagarese<br><i>et al.,</i><br>2017) | GoM<br>(Walters<br><i>et al.,</i><br>2008) | GoM<br>(Geers<br><i>et al.,</i><br>2016) | GoM<br>(WFS)<br>(Chagaris<br><i>et al.,</i><br>2015) | Gulf of<br>California<br>(Arreguin-<br>Sánchez <i>et</i><br><i>al.</i> , 2002) | Peru<br>(Tam<br><i>et al.</i> ,<br>2008) | British<br>Columbia<br>(Ainsworth <i>et</i><br><i>al.</i> , 2002) |
|-------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
| Total PP/total biomass                                | 30.3                                   | 30.0                                        | 19.0                                       | 21.0                                     | 14.0                                                 | 27.4                                                                           | 55.1                                     | 21.2                                                              |
| Total biomass/total<br>throughput                     | 0.015                                  | 0.016                                       | 0.022                                      | 0.021                                    | 0.012                                                | 0.015                                                                          | 0.005                                    | 0.017                                                             |
| Total catch<br>(t km <sup>-2</sup> yr <sup>-1</sup> ) | 2.97                                   | 3.18                                        | 21.86                                      | 4.02                                     | 0.41                                                 | 4.59                                                                           | 42.70                                    | 1.60                                                              |
| Connectance Index                                     | 0.374                                  | 0.396                                       | 0.131                                      | 0.303                                    | 0.231                                                | 0.245                                                                          | 0.168                                    | 0.210                                                             |
| System Omnivory Index                                 | 0.30                                   | 0.41                                        | 0.12                                       | 0.19                                     | 0.20                                                 | 0.33                                                                           | 0.20                                     | 0.21                                                              |
| Relative ascendency                                   | 37.4%                                  | 39.7%                                       | -                                          | -                                        | -                                                    | 17.7%                                                                          | 46.2%                                    | 33.2%                                                             |
| Transfer efficiency                                   | 7.90%                                  | 20.41%                                      | -                                          | -                                        | -                                                    | 23.54%                                                                         | 10.17%                                   | 14.55%                                                            |

| No | Functional group           |   | II       | III      | IV      | V        | VI       | VII      | VIII     | IX | SUM  |
|----|----------------------------|---|----------|----------|---------|----------|----------|----------|----------|----|------|
| 1  | Coastal dolphins           | 0 | 0.0355   | 0.126    | 0.131   | 0.0169   | 0.0013   | 0.000082 | 0.000004 | 0  | 0.31 |
| 2  | Offshore dolphins          | 0 | 0.00168  | 0.0855   | 0.201   | 0.0211   | 0.00141  | 0.000083 | 0.000004 | 0  | 0.31 |
| 3  | Baleen whales              | 0 | 0        | 0.178    | 0.121   | 0.0104   | 0.000602 | 0.000033 | 0.000001 | 0  | 0.31 |
| 4  | Seabird                    | 0 | 0.0693   | 0.22     | 0.173   | 0.0183   | 0.0013   | 0.000078 | 0.00003  | 0  | 0.48 |
| 5  | Sea turtle                 | 0 | 0.00189  | 0.0252   | 0.0156  | 0.00197  | 0.000183 | 0.000013 | 0.000001 | 0  | 0.04 |
| 6  | Blacktip shark             | 0 | 0.0438   | 0.13     | 0.108   | 0.019    | 0.00184  | 0.000134 | 0.000008 | 0  | 0.30 |
| 7  | Dusky shark                | 0 | 0.0013   | 0.00939  | 0.0104  | 0.00352  | 0.000487 | 0.000044 | 0.00003  | 0  | 0.03 |
| 8  | Sandbar shark              | 0 | 0.000329 | 0.00178  | 0.00214 | 0.000489 | 0.000055 | 0.000004 | 0        | 0  | 0.00 |
| 9  | Large coastal sharks       | 0 | 0.0123   | 0.0371   | 0.0485  | 0.0142   | 0.00178  | 0.000152 | 0.00001  | 0  | 0.11 |
| 10 | Large oceanic sharks       | 0 | 0.0104   | 0.0196   | 0.0343  | 0.00879  | 0.00107  | 0.000091 | 0.000006 | 0  | 0.07 |
| 11 | Atlantic sharpnose shark   | 0 | 0.013    | 0.0529   | 0.0395  | 0.00704  | 0.000643 | 0.000045 | 0.00003  | 0  | 0.11 |
| 12 | Small coastal sharks       | 0 | 0.00104  | 0.00353  | 0.00379 | 0.000573 | 0.000055 | 0.000004 | 0        | 0  | 0.01 |
| 13 | Yellowfin tuna             | 0 | 0.00125  | 0.0059   | 0.0125  | 0.0034   | 0.000404 | 0.000032 | 0.000002 | 0  | 0.02 |
| 14 | Bluefin tuna               | 0 | 0.000098 | 0.000769 | 0.00102 | 0.000238 | 0.000025 | 0.000002 | 0        | 0  | 0.00 |
| 15 | Other tunas                | 0 | 0.00275  | 0.021    | 0.0247  | 0.00442  | 0.000421 | 0.00003  | 0.000002 | 0  | 0.05 |
| 16 | Billfish                   | 0 | 0.00123  | 0.00449  | 0.00669 | 0.00203  | 0.000236 | 0.000018 | 0.000001 | 0  | 0.01 |
| 17 | Swordfish                  | 0 | 0.00271  | 0.0159   | 0.0279  | 0.00564  | 0.000587 | 0.000044 | 0.00003  | 0  | 0.05 |
| 18 | Pelagic coastal piscivores | 0 | 0.0618   | 0.168    | 0.137   | 0.0206   | 0.00173  | 0.000115 | 0.000006 | 0  | 0.39 |
| 19 | Amberjack                  | 0 | 0.00483  | 0.0489   | 0.0516  | 0.00746  | 0.000645 | 0.000044 | 0.000002 | 0  | 0.11 |
| 20 | Cobia                      | 0 | 0.00112  | 0.0184   | 0.0219  | 0.0037   | 0.000364 | 0.000027 | 0.000002 | 0  | 0.05 |
| 21 | King mackerel (0-1yr)      | 0 | 0.000563 | 0.00487  | 0.00302 | 0.000243 | 0.000015 | 0.000001 | 0        | 0  | 0.01 |
| 22 | King mackerel (1+yr)       | 0 | 0.0515   | 0.235    | 0.185   | 0.0178   | 0.00127  | 0.000077 | 0.000004 | 0  | 0.49 |
| 23 | Spanish mackerel (0-1yr)   | 0 | 0.00106  | 0.0142   | 0.0073  | 0.000528 | 0.000032 | 0.000002 | 0        | 0  | 0.02 |
| 24 | Spanish mackerel (1+yr)    | 0 | 0.00712  | 0.156    | 0.145   | 0.0159   | 0.00117  | 0.000072 | 0.00003  | 0  | 0.33 |
| 25 | Skates-rays                | 0 | 0.0532   | 0.0793   | 0.0275  | 0.00253  | 0.000177 | 0.00001  | 0        | 0  | 0.16 |
| 26 | Gag grouper (0-3yr)        | 0 | 0.00337  | 0.0102   | 0.00979 | 0.00148  | 0.000125 | 0.000008 | 0        | 0  | 0.02 |
| 27 | Gag grouper (3+yr)         | 0 | 0.0063   | 0.0279   | 0.0264  | 0.00417  | 0.000375 | 0.000026 | 0.000001 | 0  | 0.07 |
| 28 | Red grouper (0-3yr)        | 0 | 0.00229  | 0.0143   | 0.00989 | 0.00116  | 0.000092 | 0.000006 | 0        | 0  | 0.03 |

Table 23. Absolute trophic flows (t km<sup>-2</sup> yr<sup>-1</sup>) across the discrete trophic levels (I-IX). Discrete trophic level represents the fraction of biomass that originated from a given source in a given trophic path.

\_

| No | Functional group                      |   |          |         | IV       | V        | VI       | VII      | VIII     | IX | SUM  |
|----|---------------------------------------|---|----------|---------|----------|----------|----------|----------|----------|----|------|
| 29 | Red grouper (3+yr)                    | 0 | 0.018    | 0.0382  | 0.0365   | 0.00559  | 0.000509 | 0.000036 | 0.000002 | 0  | 0.10 |
| 30 | Yellowedge grouper (0-3yr)            | 0 | 0.000282 | 0.00192 | 0.000957 | 0.000101 | 800000.0 | 0        | 0        | 0  | 0.00 |
| 31 | Yellowedge grouper (3+yr)             | 0 | 0.00458  | 0.144   | 0.0269   | 0.00287  | 0.000224 | 0.000014 | 0.000001 | 0  | 0.18 |
| 32 | Goliath grouper                       | 0 | 0.000092 | 0.00218 | 0.00196  | 0.000349 | 0.000033 | 0.000002 | 0        | 0  | 0.00 |
| 33 | Deep-water grouper                    | 0 | 0.000858 | 0.0119  | 0.0125   | 0.00137  | 0.000104 | 0.000007 | 0        | 0  | 0.03 |
| 34 | Shallow-water grouper                 | 0 | 0.00789  | 0.032   | 0.0328   | 0.00499  | 0.000449 | 0.000031 | 0.000002 | 0  | 0.08 |
| 35 | Red snapper (0yr)                     | 0 | 0.00691  | 0.0254  | 0.0179   | 0.00352  | 0.000378 | 0.000029 | 0.000002 | 0  | 0.05 |
| 36 | Red snapper (1-2yr)                   | 0 | 0.0145   | 0.0782  | 0.0589   | 0.00922  | 0.000908 | 0.000068 | 0.000004 | 0  | 0.16 |
| 37 | Red snapper (3+yr)                    | 0 | 0.0201   | 0.0638  | 0.0489   | 0.00625  | 0.000504 | 0.000032 | 0.000002 | 0  | 0.14 |
| 38 | Vermilion snapper                     | 0 | 0.0512   | 0.222   | 0.0466   | 0.00414  | 0.000287 | 0.000017 | 0        | 0  | 0.32 |
| 39 | Mutton snapper                        | 0 | 0.0159   | 0.0403  | 0.0296   | 0.00331  | 0.000247 | 0.000015 | 0.000001 | 0  | 0.09 |
| 40 | Other snapper                         | 0 | 0.0204   | 0.0327  | 0.0257   | 0.00265  | 0.000188 | 0.000011 | 0        | 0  | 0.08 |
| 41 | Coastal piscivores                    | 0 | 0.105    | 0.292   | 0.143    | 0.0128   | 0.000841 | 0.000048 | 0.000002 | 0  | 0.55 |
| 42 | Sea trout                             | 0 | 0.206    | 0.339   | 0.191    | 0.016    | 0.00103  | 0.000058 | 0.000003 | 0  | 0.75 |
| 43 | Oceanic piscivores                    | 0 | 0.0459   | 0.118   | 0.119    | 0.0169   | 0.00141  | 0.000092 | 0.000005 | 0  | 0.30 |
| 44 | Benthic piscivores                    | 0 | 0.0221   | 0.0554  | 0.0477   | 0.00662  | 0.000569 | 0.000038 | 0.000002 | 0  | 0.13 |
| 45 | Reef piscivores                       | 0 | 0.0226   | 0.0582  | 0.0479   | 0.00577  | 0.000454 | 0.000029 | 0.000001 | 0  | 0.13 |
| 46 | Reef invertebrate feeders             | 0 | 0.323    | 0.636   | 0.0939   | 0.00771  | 0.000494 | 0.000028 | 0        | 0  | 1.06 |
| 47 | Demersal coastal invertebrate feeders | 0 | 0.428    | 0.947   | 0.12     | 0.0093   | 0.000581 | 0.000032 | 0        | 0  | 1.50 |
| 48 | Red drum                              | 0 | 0.0595   | 0.364   | 0.138    | 0.01     | 0.000586 | 0.000032 | 0.000001 | 0  | 0.57 |
| 49 | Benthic coastal invertebrate feeders  | 0 | 0.301    | 0.591   | 0.0877   | 0.00652  | 0.000387 | 0.000021 | 0        | 0  | 0.99 |
| 50 | Tilefish                              | 0 | 0.00127  | 0.0164  | 0.00609  | 0.000698 | 0.000058 | 0.000004 | 0        | 0  | 0.02 |
| 51 | Gray triggerfish                      | 0 | 0.118    | 0.16    | 0.0405   | 0.00439  | 0.000304 | 0.000017 | 0        | 0  | 0.32 |
| 52 | Coastal omnivores                     | 0 | 0.525    | 0.806   | 0.111    | 0.00844  | 0.000485 | 0.000024 | 0        | 0  | 1.45 |
| 53 | Reef omnivores                        | 0 | 0.0614   | 0.0992  | 0.00693  | 0.000424 | 0.000024 | 0.000001 | 0        | 0  | 0.17 |
| 54 | Surface pelagics                      | 0 | 0.41     | 0.873   | 0.165    | 0.0132   | 0.000807 | 0.000044 | 0        | 0  | 1.46 |

Table 23-Continued. Absolute trophic flows (t km<sup>-2</sup> yr<sup>-1</sup>) across the discrete trophic levels (I-IX). Discrete trophic level represents the fraction of biomass that originated from a given source in a given trophic path.

| No | Functional group                 | I     |          |        | IV      | V        | VI       | VII      | VIII | IX | SUM      |
|----|----------------------------------|-------|----------|--------|---------|----------|----------|----------|------|----|----------|
| 55 | Large oceanic<br>planktivores    | 0     | 0.000401 | 0.0176 | 0.00415 | 0.000479 | 0.000033 | 0.000002 | 0    | 0  | 0.02     |
| 56 | Oceanic planktivores             | 0     | 0        | 0.334  | 0.0529  | 0.00393  | 0.000222 | 0.000012 | 0    | 0  | 0.39     |
| 57 | Sardine-herring-scad             | 0     | 2.095    | 4.02   | 0.463   | 0.0345   | 0.00201  | 0.000101 | 0    | 0  | 6.61     |
| 58 | Menhaden (0yr)                   | 0     | 62.28    | 17.95  | 0.925   | 0.044    | 0.00204  | 0        | 0    | 0  | 81.20    |
| 59 | Menhaden (1yr)                   | 0     | 74.32    | 21.42  | 1.104   | 0.0525   | 0.00243  | 0        | 0    | 0  | 96.90    |
| 60 | Menhaden (2yr)                   | 0     | 23.71    | 6.833  | 0.352   | 0.0167   | 0.000775 | 0        | 0    | 0  | 30.91    |
| 61 | Menhaden (3yr)                   | 0     | 4.816    | 1.388  | 0.0715  | 0.0034   | 0.000157 | 0        | 0    | 0  | 6.28     |
| 62 | Menhaden (4+yr)                  | 0     | 1.225    | 0.353  | 0.0182  | 0.000865 | 0.00004  | 0        | 0    | 0  | 1.60     |
| 63 | Anchovy-silverside-<br>killifish | 0     | 4.679    | 6.159  | 0.352   | 0.0184   | 0.00102  | 0.000044 | 0    | 0  | 11.21    |
| 64 | Mullet                           | 0     | 1.422    | 0.817  | 0.0542  | 0.00287  | 0.000159 | 0.000007 | 0    | 0  | 2.30     |
| 65 | Butterfish                       | 0     | 0.162    | 0.409  | 0.0192  | 0.000961 | 0.00005  | 0.000002 | 0    | 0  | 0.59     |
| 66 | Cephalopod                       | 0     | 1.544    | 11.11  | 0.987   | 0.0564   | 0.00307  | 0.000142 | 0    | 0  | 13.70    |
| 67 | Pink shrimp                      | 0     | 0.899    | 0.609  | 0.0274  | 0.00139  | 0.000074 | 0        | 0    | 0  | 1.54     |
| 68 | Brown shrimp                     | 0     | 1.103    | 0.059  | 0.00298 | 0.000161 | 800000.0 | 0        | 0    | 0  | 1.17     |
| 69 | White shrimp                     | 0     | 9.151    | 0.43   | 0.0175  | 0.000909 | 0.000032 | 0        | 0    | 0  | 9.60     |
| 70 | Crab                             | 0     | 0.52     | 1.957  | 0.139   | 0.00811  | 0.000484 | 0.000023 | 0    | 0  | 2.62     |
| 71 | Sessile epifauna                 | 0     | 106.9    | 1.056  | 0.0534  | 0.00246  | 0        | 0        | 0    | 0  | 108.01   |
| 72 | Mobile epifauna                  | 0     | 253.7    | 32.29  | 1.885   | 0.119    | 0.00645  | 0        | 0    | 0  | 288.00   |
| 73 | Zooplankton                      | 0     | 1061     | 47.1   | 2.091   | 0.0929   | 0.00309  | 0        | 0    | 0  | 1110.29  |
| 74 | Infauna                          | 0     | 389.8    | 16.37  | 0.805   | 0.0421   | 0.00157  | 0        | 0    | 0  | 407.02   |
| 75 | Algae                            | 819.5 | 0        | 0      | 0       | 0        | 0        | 0        | 0    | 0  | 819.50   |
| 76 | Seagrass                         | 3,750 | 0        | 0      | 0       | 0        | 0        | 0        | 0    | 0  | 3,750.00 |
| 77 | Phytoplankton                    | 4,000 | 0        | 0      | 0       | 0        | 0        | 0        | 0    | 0  | 4,000.00 |
| 78 | Detritus                         | 8,152 | 0        | 0      | 0       | 0        | 0        | 0        | 0    | 0  | 8,152.00 |

Table 23-Continued. Absolute trophic flows (t km<sup>-2</sup> yr<sup>-1</sup>) across the discrete trophic levels (I-IX). Discrete trophic level represents the fraction of biomass that originated from a given source in a given trophic path.

Table 24. Estimates of fishing mortality rates for achieving maximum sustainable yield ( $F_{MSY}$ ) derived from EwE (i.e., stationary vs. compensatory) and from stock assessments. \*Value represents the upper bound of the search algorithm since  $F_{MSY}$  was not determined

| Eurotional group          | F     | FMSY       | FMSY         | FMSY       | Sourco          |
|---------------------------|-------|------------|--------------|------------|-----------------|
| Functional group          | base  | stationary | compensatory | assessment | Source          |
| Dusky shark               | 0.028 | 0.091      | 0.091        | 0.035      | SEDAR 21 Update |
| Sandbar shark             | 0.164 | 0.164      | 0.164        | 0.021      | SEDAR 54        |
| Large coastal sharks      | 0.030 | 0.112      | 0.112        | 0.024      | SEDAR 11        |
| Atlantic sharpnose shark  | 0.377 | 0.377      | 0.377        | 0.331      | SEDAR 34        |
| Small coastal sharks      | 0.147 | 0.214      | 0.214        | 0.202      | SEDAR 34        |
| Yellowfin tuna            | 0.797 | 0.072      | 0.072        | 0.160      | ICCAT 2019      |
| Bluefin tuna              | 0.110 | 0.010      | 0.010        | 0.090      | ICCAT 2017c     |
| Amberjack                 | 0.214 | 0.214      | 0.214        | 0.220      | SEDAR 33 Update |
| Cobia                     | 0.207 | 0.490      | 0.490        | 0.340      | SEDAR 28        |
| King mackerel (1+yr)      | 0.067 | 0.432      | 0.584        | 0.160      | SEDAR 38        |
| Spanish mackerel (1+yr)   | 0.194 | 0.546      | 0.634        | 0.360      | SEDAR 28        |
| Gag grouper (3+yr)        | 0.245 | 0.357      | 0.357        | 0.196      | SEDAR 33 Update |
| Red grouper (3+yr)        | 0.277 | 0.277      | 0.277        | 0.259      | SEDAR 61        |
| Yellowedge grouper (3+yr) | 0.026 | 0.038      | 0.038        | 0.050      | SEDAR 22        |
| Goliath grouper           | 0.212 | 0.115      | 0.115        | 0.182      | SEDAR 47        |
| Red snapper (3+yr)        | 0.255 | 0.023      | 0.023        | 0.059      | SEDAR 52        |
| Vermilion snapper         | 0.040 | 0.476      | 0.495        | 0.135      | SEDAR 67        |
| Mutton snapper            | 0.059 | 0.246      | 0.246        | 0.180      | SEDAR 15 Update |
| Tilefish                  | 0.044 | 0.327      | 0.327        | 0.120      | SEDAR 22        |
| Gray triggerfish          | 0.144 | 0.275      | 0.275        | 0.153      | SEDAR 43        |
| Menhaden (3yr)            | 0.436 | 5.783      | 6.377        | 4.500*     | SEDAR 63        |

| No | Functional group           | B (start) | B (end) | B (end/start) | C (start) | C (end) | C (end/start) |
|----|----------------------------|-----------|---------|---------------|-----------|---------|---------------|
| 1  | Coastal dolphins           | 0.021     | 0.028   | 1.353         |           | . /     | · · · · ·     |
| 2  | Offshore dolphins          | 0.021     | 0.028   | 1.337         |           |         |               |
| 3  | Baleen whales              | 0.021     | 0.022   | 1.032         |           |         |               |
| 4  | Seabird                    | 0.015     | 0.029   | 1.900         |           |         |               |
| 5  | Sea turtle                 | 0.013     | 0.021   | 1.633         |           |         |               |
| 6  | Blacktip shark             | 0.098     | 0.171   | 1.746         | 0.001     | 0.000   | 0.218         |
| 7  | Dusky shark                | 0.009     | 0.010   | 1.078         | 0.000     | 0.001   | 4.194         |
| 8  | Sandbar shark              | 0.002     | 0.003   | 1.936         | 0.000     | 0.000   | 1.829         |
| 9  | Large coastal sharks       | 0.039     | 0.049   | 1.254         | 0.001     | 0.002   | 1.725         |
| 10 | Large oceanic sharks       | 0.028     | 0.001   | 0.035         | 0.001     | 0.000   | 0.460         |
| 11 | Atlantic sharpnose shark   | 0.022     | 0.054   | 2.450         | 0.005     | 0.007   | 1.500         |
| 12 | Small coastal sharks       | 0.002     | 0.002   | 1.264         | 0.000     | 0.000   | 1.145         |
| 13 | Yellowfin tuna             | 0.004     | 0.037   | 9.146         | 0.001     | 0.008   | 10.136        |
| 14 | Bluefin tuna               | 0.000     | 0.001   | 1.398         | 0.000     | 0.000   | 0.530         |
| 15 | Other tunas                | 0.006     | 0.002   | 0.240         | 0.004     | 0.002   | 0.536         |
| 16 | Billfish                   | 0.003     | 0.001   | 0.414         | 0.001     | 0.001   | 0.854         |
| 17 | Swordfish                  | 0.017     | 0.084   | 4.984         | 0.001     | 0.011   | 8.454         |
| 18 | Pelagic coastal piscivores | 0.065     | 0.064   | 0.983         | 0.017     | 0.015   | 0.856         |
| 19 | Amberjack                  | 0.031     | 0.030   | 0.958         | 0.005     | 0.008   | 1.631         |
| 20 | Cobia                      | 0.011     | 0.013   | 1.156         | 0.003     | 0.003   | 1.097         |
| 21 | King mackerel (0-1yr)      | 0.001     | 0.002   | 2.904         | 0.000     | 0.000   | 2.004         |
| 22 | King mackerel (1+yr)       | 0.159     | 0.342   | 2.150         | 0.008     | 0.016   | 2.099         |
| 23 | Spanish mackerel (0-1yr)   | 0.001     | 0.003   | 2.543         | 0.002     | 0.003   | 1.651         |
| 24 | Spanish mackerel (1+yr)    | 0.073     | 0.160   | 2.174         | 0.010     | 0.013   | 1.313         |
| 25 | Skates-rays                | 0.035     | 0.044   | 1.248         | 0.001     | 0.001   | 1.364         |
| 26 | Gag grouper (0-3yr)        | 0.003     | 0.005   | 1.690         | 0.001     | 0.002   | 2.184         |
| 27 | Gag grouper (3+yr)         | 0.020     | 0.041   | 2.034         | 0.005     | 0.003   | 0.613         |
| 28 | Red grouper (0-3yr)        | 0.003     | 0.006   | 1.843         | 0.000     | 0.000   | 3.858         |

Table 25. Comparison of biomass (B, t km<sup>-2</sup>) and catch (C, t km<sup>-2</sup>) in the starting year (1980) and ending year (2016).

Table 25-Continued. Comparison of biomass (B, t km<sup>-2</sup>) and catch (C, t km<sup>-2</sup>) in the starting year (1980) and ending year (2016).

| No | Functional group                      | B (start) | B (end) | B (end/start) | C (start) | C (end) | C (end/start) |
|----|---------------------------------------|-----------|---------|---------------|-----------|---------|---------------|
| 29 | Red grouper (3+yr)                    | 0.030     | 0.068   | 2.270         | 0.007     | 0.011   | 1.568         |
| 30 | Yellowedge grouper (0-3yr)            | 0.000     | 0.000   | 1.060         | 0.000     | 0.000   | 0.646         |
| 31 | Yellowedge grouper (3+yr)             | 0.052     | 0.038   | 0.735         | 0.001     | 0.002   | 1.684         |
| 32 | Goliath grouper                       | 0.001     | 0.004   | 2.879         | 0.000     | 0.000   | 0.231         |
| 33 | Deep-water grouper                    | 0.008     | 0.016   | 2.048         | 0.000     | 0.000   | 2.294         |
| 34 | Shallow-water grouper                 | 0.013     | 0.093   | 6.974         | 0.005     | 0.001   | 0.222         |
| 35 | Red snapper (0yr)                     | 0.003     | 0.007   | 2.022         | 0.001     | 0.001   | 1.396         |
| 36 | Red snapper (1-2yr)                   | 0.021     | 0.049   | 2.344         | 0.010     | 0.000   | 0.029         |
| 37 | Red snapper (3+yr)                    | 0.048     | 0.204   | 4.242         | 0.012     | 0.018   | 1.510         |
| 38 | Vermilion snapper                     | 0.080     | 0.068   | 0.856         | 0.001     | 0.010   | 10.309        |
| 39 | Mutton snapper                        | 0.016     | 0.021   | 1.314         | 0.002     | 0.001   | 0.612         |
| 40 | Other snapper                         | 0.014     | 0.015   | 1.080         | 0.002     | 0.003   | 1.162         |
| 41 | Coastal piscivores                    | 0.093     | 0.212   | 2.266         | 0.021     | 0.037   | 1.742         |
| 42 | Sea trout                             | 0.117     | 0.188   | 1.607         | 0.054     | 0.091   | 1.677         |
| 43 | Oceanic piscivores                    | 0.038     | 0.081   | 2.113         | 0.000     | 0.000   | 1.204         |
| 44 | Benthic piscivores                    | 0.028     | 0.029   | 1.037         | 0.002     | 0.004   | 1.782         |
| 45 | Reef piscivores                       | 0.028     | 0.012   | 0.445         | 0.006     | 0.003   | 0.538         |
| 46 | Reef invertebrate feeders             | 0.192     | 0.206   | 1.070         | 0.015     | 0.019   | 1.253         |
| 47 | Demersal coastal invertebrate feeders | 0.287     | 0.773   | 2.696         | 0.084     | 0.177   | 2.099         |
| 48 | Red drum                              | 0.124     | 0.193   | 1.550         | 0.004     | 0.005   | 1.307         |
| 49 | Benthic coastal invertebrate feeders  | 0.194     | 0.138   | 0.712         | 0.001     | 0.001   | 1.259         |
| 50 | Tilefish                              | 0.007     | 0.006   | 0.743         | 0.000     | 0.001   | 33.077        |
| 51 | Gray triggerfish                      | 0.061     | 0.106   | 1.724         | 0.002     | 0.007   | 2.878         |
| 52 | Coastal omnivores                     | 0.176     | 0.231   | 1.309         | 0.003     | 0.007   | 2.221         |
| 53 | Reef omnivores                        | 0.023     | 0.033   | 1.416         | 0.000     | 0.000   | 2.087         |
| 54 | Surface pelagics                      | 0.146     | 0.241   | 1.643         | 0.000     | 0.001   | 3.519         |

Table 25-Continued. Comparison of biomass (B, t km<sup>-2</sup>) and catch (C, t km<sup>-2</sup>) in the starting year (1980) and ending year (2016).

| No | Functional group             | B (start) | B (end) | B (end/start) | C (start) | C (end) | C (end/start) |
|----|------------------------------|-----------|---------|---------------|-----------|---------|---------------|
| 55 | Large oceanic planktivores   | 0.018     | 0.015   | 0.856         |           |         |               |
| 56 | Oceanic planktivores         | 0.047     | 0.032   | 0.667         |           |         |               |
| 57 | Sardine-herring-scad         | 0.686     | 0.689   | 1.005         | 0.008     | 0.008   | 0.917         |
| 58 | Menhaden (0yr)               | 2.677     | 7.467   | 2.789         | 0.005     | 0.006   | 1.114         |
| 59 | Menhaden (1yr)               | 5.697     | 12.035  | 2.112         | 1.417     | 1.101   | 0.777         |
| 60 | Menhaden (2yr)               | 2.508     | 5.407   | 2.156         | 1.571     | 2.512   | 1.599         |
| 61 | Menhaden (3yr)               | 0.636     | 1.693   | 2.661         | 0.318     | 0.620   | 1.951         |
| 62 | Menhaden (4+yr)              | 0.175     | 0.772   | 4.415         | 0.076     | 0.248   | 3.240         |
| 63 | Anchovy-silverside-killifish | 0.798     | 2.884   | 3.613         | 0.000     | 0.000   | 2.051         |
| 64 | Mullet                       | 0.298     | 0.358   | 1.204         | 0.043     | 0.020   | 0.467         |
| 65 | Butterfish                   | 0.079     | 0.110   | 1.392         | 0.002     | 0.003   | 1.569         |
| 66 | Cephalopod                   | 1.636     | 2.728   | 1.667         | 0.000     | 0.000   | 1.397         |
| 67 | Pink shrimp                  | 0.096     | 0.145   | 1.505         | 0.016     | 0.005   | 0.335         |
| 68 | Brown shrimp                 | 0.077     | 0.171   | 2.222         | 0.152     | 0.125   | 0.820         |
| 69 | White shrimp                 | 0.585     | 0.910   | 1.555         | 0.048     | 0.066   | 1.381         |
| 70 | Crab                         | 0.211     | 0.124   | 0.588         | 0.172     | 0.177   | 1.024         |
| 71 | Sessile epifauna             | 14.313    | 55.703  | 3.892         | 0.033     | 0.118   | 3.564         |
| 72 | Mobile epifauna              | 19.221    | 27.239  | 1.417         | 0.036     | 0.045   | 1.230         |
| 73 | Zooplankton                  | 16.717    | 18.786  | 1.124         | 0.002     | 0.001   | 0.631         |
| 74 | Infauna                      | 17.331    | 17.941  | 1.035         | 0.000     | 0.000   | 1.001         |
| 75 | Algae                        | 30.486    | 49.192  | 1.614         |           |         |               |
| 76 | Seagrass                     | 153.692   | 248.364 | 1.616         |           |         |               |
| 77 | Phytoplankton                | 21.990    | 28.852  | 1.312         |           |         |               |
| 78 | Detritus                     | 100.936   | 141.307 | 1.400         |           |         |               |
|    | Total                        | 393.441   | 627.209 | 1.594         | 4.203     | 5.555   | 1.322         |

Table 26. Summary of data needs and considerations for applying the U.S. Gulf-wide Ecopath with Ecosim model for each functional group. Usability score (Score) includes: (1) model could be readily modified within a typical model development-review cycle; (2) model needs additional data and a typical model development-review cycle; (3) extensive data needed (e.g., long-time series) or the model is not feasible. Number of diet observations (i.e., studies, see Figure S1.1 for details) and number of stomachs feeding into the diet matrix are shown, as well as time series currently included in the model.

| Eunctional Group  | Notable species and     | Diet observations | Time<br>series | Score | Data Needs and Considerations                    |  |
|-------------------|-------------------------|-------------------|----------------|-------|--------------------------------------------------|--|
| i unctional Group | importance              | (Stomachs)        |                |       |                                                  |  |
| Coastal dolphins  | All protected under     | 27 (739)          | -              | 3     | Need species-specific biomass, incidental        |  |
|                   | Marine Mammal           |                   |                |       | bycatch in fisheries, diet composition, and time |  |
|                   | Protection Act (MMPA)   |                   |                |       | series                                           |  |
| Offshore dolphins | All protected resources |                   | -              | 3     | Need species-specific biomass, diet              |  |
|                   | as described above in   |                   |                |       | composition, and time series; consider           |  |
|                   | MMPA                    |                   |                |       | disaggregating group and expanding spatial       |  |
|                   |                         |                   |                |       | domain of model to capture more oceanic          |  |
|                   |                         |                   |                |       | cetaceans (> 400 m) such as the Sperm Whale      |  |
|                   |                         |                   |                |       | (Endangered in Endangered Species Act)           |  |
| Baleen whales     | All protected resources | 0                 | -              | 3     | Need species-specific biomass, diet              |  |
|                   | as described above in   |                   |                |       | composition, and time series                     |  |
|                   | MMPA; Endangered        |                   |                |       |                                                  |  |
|                   | species (ESA) include   |                   |                |       |                                                  |  |
|                   | Sei, Fin, and Brydes    |                   |                |       |                                                  |  |
|                   | Whales                  |                   |                |       |                                                  |  |
| Sea birds         | -                       | 60 (74,403)       | -              | 3     | Need species-specific biomass, diet              |  |
|                   |                         |                   |                |       | composition, and time series                     |  |
| Sea turtles       | All endangered or       | 15 (632)          | -              | 3     | Need species-specific biomass, incidental        |  |
|                   | threatened species      |                   |                |       | bycatch in fisheries, diet composition, and time |  |
|                   | according to ESA        |                   |                |       | series; consider disaggregating group to better  |  |
|                   |                         |                   |                |       | capture differences in foraging behavior         |  |

Table 26-Continued. Summary of data needs and considerations for applying the U.S. Gulf-wide Ecopath with Ecosim model for each functional group. Usability score (Score) includes: (1) model could be readily modified within a typical model development-review cycle; (2) model needs additional data and a typical model development-review cycle; (3) extensive data needed (e.g., long-time series) or the model is not feasible. Number of diet observations (i.e., studies, see Figure S1.1 for details) and number of stomachs feeding into the diet matrix are shown, as well as time series currently included in the model.

| Functional Group        | Notable species and importance                                                    | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                                                                                           |
|-------------------------|-----------------------------------------------------------------------------------|------------------------------------|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blacktip Shark          | Federally assessed                                                                | 16 (1,923)                         | C, B, F        | 2     | HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider additional<br>data sources for relative abundance (e.g.,<br>longline survey)       |
| Dusky Shark             | Federally assessed                                                                | 16 (2,505)                         | relC, B,<br>F  | 2     | HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider additional<br>data sources for relative abundance (e.g.,<br>longline survey)       |
| Sandbar Shark           | Federally assessed                                                                | 16 (2,396)                         | C, B, F        | 2     | HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider additional<br>data sources for relative abundance (e.g.,<br>longline survey)       |
| Large coastal<br>sharks | Federally assessed                                                                | 58 (5,696)                         | С, В           | 2     | HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider additional<br>data sources for relative abundance (e.g.,<br>longline survey)       |
| Large oceanic<br>sharks | Internationally<br>assessed; Oceanic<br>whitetip shark is a<br>Threatened species | 32 (3,979)                         | С, В           | 2     | HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider additional<br>data sources for relative abundance (e.g.,<br>pelagic longline data) |
| Functional Group     | Notable species and importance | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                                                                                           |
|----------------------|--------------------------------|------------------------------------|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atlantic sharpnose   | Federally<br>assessed          | 20 (1,039)                         | C, B, F        | 2     | HMS, may not represent GOM trends (poor<br>fits in Ecosim); consider additional data<br>sources for relative abundance (indices in<br>stock assessment) |
| Small coastal sharks | Federally<br>assessed          | 33 (2,813)                         | С, В           | 2     | HMS, may not represent GOM trends;<br>consider additional data sources for relative<br>abundance (indices in stock assessment)                          |
| Yellowfin Tuna       | Internationally<br>assessed    | 27 (9,457)                         | C, B, F        | 2     | <i>F</i> from HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider expanding<br>spatial domain to capture more oceanic<br>habitat       |
| Bluefin Tuna         | Internationally<br>assessed    | 18 (2,265)                         | C, B, F        | 2     | <i>F</i> from HMS, may not represent GOM trends<br>(poor fits in Ecosim); consider expanding<br>spatial domain to capture more oceanic<br>habitat       |
| Other tunas          | Internationally<br>assessed    | 18 (2,857)                         | С, В           | 2     | Consider expanding spatial domain to<br>capture more oceanic habitat                                                                                    |

| Functional Group              | Notable species and importance                               | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                                                                                        |
|-------------------------------|--------------------------------------------------------------|------------------------------------|----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Billfish                      | Internationally<br>assessed                                  | 43 (4,463)                         | C, B, F        | 2     | <i>F</i> from HMS Assessment may not represent GOM trends (poor fits in Ecosim); consider                                                            |
|                               |                                                              |                                    |                |       | expanding spatial domain to capture oceanic habitat                                                                                                  |
| Swordfish                     | Internationally<br>assessed                                  | 24 (2,458)                         | C, B, F        | 2     | <i>F</i> from HMS Assessment may not represent<br>GOM trends (poor fits in Ecosim); consider<br>expanding spatial domain to capture oceanic          |
| Pelagic coastal<br>piscivores | Bluefish - state<br>assessed; Almaco<br>jack - federal data- | 109 (17,514)                       | С, В           | 2     | habitat<br>Need time series of biomass (poor fits in<br>Ecosim); consider additional data sources for<br>relative abundance (e.g., not bottom trawl) |
| Amberiacks                    | Federally assessed                                           | 12 (842)                           | C.B.F          | 1     | -                                                                                                                                                    |
| Cobia                         | Federally assessed                                           | 14 (888)                           | C, B, F        | 1     | -                                                                                                                                                    |
| King mackerel                 | Federally assessed                                           | 3 (188); 24<br>(14,328)            | C, B, F        | 1     | Need better juvenile diet composition                                                                                                                |
| Spanish mackerel              | Federally assessed                                           | 3 (289); 12<br>(9,225)             | C, B, F        | 1     | Need better juvenile diet composition                                                                                                                |
| Skates/Rays                   | Smalltooth sawfish is<br>an endangered<br>species in ESA     | 44 (1,636)                         | С, В           | 2     | Consider additional data sources for relative abundance (e.g., not bottom trawl)                                                                     |

| Functional Group      | Notable species and importance                                              | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------|------------------------------------|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gag grouper           | Federally assessed                                                          | 21 (2,250); 9                      | C, B, F        | 1     | Need better data on diet composition                                                                                                                                |
| Red grouper           | Federally assessed                                                          | (1,606)<br>13 (459); 7 (415)       | C, B, F        | 1     | and predation on adults<br>Need better data on diet composition<br>and predation on adults                                                                          |
| Yellowedge grouper    | Federally assessed                                                          | 0; 2 (3)                           | C, B, F        | 1     | Need better data on diet composition and predation on adults                                                                                                        |
| Goliath grouper       | Federally assessed                                                          | 9 (239)                            | C, B, F        | 1     | Need better diet composition and predation on adults                                                                                                                |
| Other deep grouper    | Snowy grouper,<br>speckled hind - federal<br>data-limited<br>assessment     | 8 (64)                             | С              | 2     | Need time series of biomass and better<br>data on diet composition; consider<br>additional data sources for relative<br>abundance (e.g., bottom longline<br>survey) |
| Other shallow grouper | Scamp - federally<br>assessed; Nassau<br>grouper is a<br>Threatened Species | 39 (1,153)                         | С, В           | 2     | Need time series of biomass (poor fits<br>in Ecosim); consider additional data<br>sources for relative abundance (e.g.,<br>bottom longline survey)                  |
| Red snapper           | Federally assessed                                                          | 40 (3,830); 25<br>(1,765)          | C, B, F        | 1     | Need better understanding of predation on adults                                                                                                                    |
| Vermilion snapper     | Federally assessed                                                          | 13 (1,017)                         | C, B, F        | 1     | -                                                                                                                                                                   |

| Functional Group                  | Notable species and importance                                                         | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                          |
|-----------------------------------|----------------------------------------------------------------------------------------|------------------------------------|----------------|-------|----------------------------------------------------------------------------------------|
| Mutton snapper                    | Federally assessed                                                                     | 7 (419)                            | C, B, F        | 1     | -                                                                                      |
| Other snapper                     | Gray snapper - federally<br>assessed; wenchman -<br>federal data-limited<br>assessment | 31 (1,859)                         | С, В           | 2     | Consider additional data<br>sources for relative abundance<br>(e.g., not bottom trawl) |
| Coastal piscivores                | Snook - state assessed                                                                 | 44 (4,882)                         | С, В           | 2     | Consider additional data<br>sources for relative abundance<br>(e.g., not bottom trawl) |
| Sea trout                         | State assessed                                                                         | 61 (7,483)                         | С, В           | 2     | Consider additional data<br>sources for relative abundance<br>(e.g., not bottom trawl) |
| Oceanic piscivores                | -                                                                                      | 45 (6,950)                         | С, В           | 2     | Consider additional data<br>sources for relative abundance<br>(e.g., not bottom trawl) |
| Benthic piscivores                | Gulf flounder, Southern flounder - state assessed                                      | 77 (4,571)                         | С, В           | 2     | Consider additional data<br>sources for relative abundance<br>(e.g., not bottom trawl) |
| Reef/rubble-associated piscivores | -                                                                                      | 35 (818)                           | С, В           | 2     | Consider additional data<br>sources for relative abundance<br>(e.g., not bottom trawl) |

| Functional Group                      | Notable species and importance                                                                                                   | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                              |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|-------|--------------------------------------------------------------------------------------------|
| Reef/rubble-associated invert feeders | Yellowtail snapper - federally<br>assessed; lane snapper -<br>federal data-limited<br>assessment, sheepshead -<br>state assessed | 157 (8,320)                        | С, В           | 2     | Consider additional data sources<br>for relative abundance (e.g., not<br>bottom trawl)     |
| Demersal coastal invert<br>feeders    | -                                                                                                                                | 240 (23,132)                       | С, В           | 1     | Consider additional data sources<br>for relative abundance (e.g., not<br>bottom trawl)     |
| Red drum                              | State assessed, federal data-<br>limited assessment                                                                              | 23 (3,419)                         | С, В           | 2     | Need time series of biomass;<br>consider additional data sources<br>for relative abundance |
| Benthic coastal invert<br>feeders     | Gulf sturgeon is an<br>Endangered species in ESA                                                                                 | 89 (6,596)                         | С, В           | 1     | Consider additional data sources<br>for relative abundance (e.g., not<br>bottom trawl)     |
| Tilefish                              | Federally assessed                                                                                                               | 9 (658)                            | C, B, F        | 1     | -                                                                                          |
| Gray triggerfish                      | Federally assessed                                                                                                               | 14 (391)                           | C, B, F        | 1     | Poor fit noted in Ecosim, re-<br>evaluate trends after next stock<br>assessment            |
| Coastal omnivores                     | -                                                                                                                                | 91 (7,289)                         | С, В           | 2     | Consider additional data sources<br>for relative abundance (e.g., not<br>bottom trawl)     |

| Functional Group                 | Notable species and importance                | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                                                        |
|----------------------------------|-----------------------------------------------|------------------------------------|----------------|-------|--------------------------------------------------------------------------------------|
| Reef omnivores                   | -                                             | 58 (1,174)                         | С              | 2     | Need time series of biomass; consider data sources for relative abundance            |
| Surface pelagics                 | -                                             |                                    | С              | 2     | Need time series of biomass; consider data sources for relative abundance            |
| Oceanic<br>planktivores          | -                                             | 31 (1,565)                         | -              | 2     | Need time series of biomass; consider data sources for relative abundance            |
| Large oceanic<br>planktivores    | Giant manta ray<br>is a Threatened<br>species |                                    | С              | 3     | Need species-specific biomass, and time series                                       |
| Sardine-herring-<br>scad         | -                                             | 51 (2,797)                         | С, В           | 2     | Consider additional data sources for relative abundance (e.g., not bottom trawl)     |
| Menhaden                         | Federally<br>assessed                         | 8 (723)                            | C, B, F        | 1     | Need better understanding of predators                                               |
| Anchovy-<br>silverside-killifish | -                                             | 62 (7,726)                         | В              | 2     | Consider additional data sources for relative abundance (e.g., not bottom trawl)     |
| Mullet                           | State assessed                                | 29 (2,972)                         | С              | 3     | Need time series of biomass; consider additional data sources for relative abundance |
| Butterfish                       | -                                             | 12 (873)                           | В              | 2     | Consider additional data sources for relative abundance (e.g., not bottom trawl)     |

| Functional Group | Notable species and importance | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                 |
|------------------|--------------------------------|------------------------------------|----------------|-------|-----------------------------------------------|
| Cephalopod       | -                              | -                                  | В              | 2     | Consider additional data sources for relative |
|                  |                                |                                    |                |       | abundance (e.g., not bottom trawl)            |
| Pink shrimp      | Federally assessed             | -                                  | C, B, F        | 1     | -                                             |
| <b>_</b>         |                                |                                    | 0 D E          |       |                                               |
| Brown shrimp     | Federally assessed             | -                                  | С, В, F        | 1     | -                                             |
| White shrimp     | Federally assessed             | _                                  | CBF            | 1     | _                                             |
|                  |                                |                                    | 0, 0, 1        | I     |                                               |
| Blue crab        | Federally assessed             | -                                  | C, B, F        | 2     | Need time series of biomass (poor fits in     |
|                  | ·                              |                                    |                |       | Ecosim); consider additional data sources for |
|                  |                                |                                    |                |       | relative abundance                            |
| Sessile epifauna | -                              | -                                  | С              | 3     | Need time series of biomass; consider         |
|                  |                                |                                    |                |       | additional data sources for relative          |
|                  |                                |                                    |                |       | abundance and disaggregating group            |
| Mobile epifauna  | Spiny lobster –                | -                                  | С, В           | 3     | Need time series of biomass; consider         |
|                  | federally assessed             |                                    |                |       | additional data sources for relative          |
|                  |                                |                                    |                |       | abundance and disaggregating group            |
| Zooplankton      | -                              | -                                  |                | 3     | Consider new data sources to parameter        |
|                  |                                |                                    |                |       | biomass and disaggregating group              |
| Infauna          | -                              | -                                  |                | 3     | Consider new data sources to parameter        |
|                  |                                |                                    |                |       | biomass and disaggregating group              |

| Functional<br>Group | Notable species and importance | Diet<br>observations<br>(Stomachs) | Time<br>series | Score | Data Needs and Considerations                  |
|---------------------|--------------------------------|------------------------------------|----------------|-------|------------------------------------------------|
| Algae               | -                              | -                                  |                | 2     | Consider new data sources to parameter biomass |
| Seagrass            | -                              | -                                  |                | 2     | Consider new data sources to parameter biomass |
| Phytoplankton       | -                              | -                                  |                | 2     | Consider new data sources to parameter biomass |
| Detritus            | -                              | -                                  |                | 1     | -                                              |

## Appendix 1 – summary of diet approach and gut content studies used to develop the diet matrix



Figure S1.1. Bootstrap procedure followed for meta-analysis to quantify trophic interactions within the northern Gulf of Mexico and to identify the importance of Gulf Menhaden in predator diets (%W = percent weight; %V = percent volume; %FO = percent frequency of occurrence). Results from the maximum likelihood estimate (MLE) based on a probabilistic bootstrap approach (solid black line) are compared to the simple mean (dashed black line) and weighted mean (dashed gray line). The probabilistic approach was adapted from Ainsworth *et al.* (2010).

| Functional group/species | Reference                      | Observations      |
|--------------------------|--------------------------------|-------------------|
|                          | Kelefence                      | (Stomachs)        |
| (1) Coastal dolphins     |                                | 27 (739)          |
| Bottlenose dolphin       | Barros 1992                    | 1 (38)            |
|                          | Barros 1993                    | 2 (77)            |
|                          | Barros and Odell 1990          | 4 (76)            |
|                          | Barros and Wells 1998          | 1 (16)            |
|                          | Berens McCabe et al. 2010      | 1 (15)            |
|                          | Blanco <i>et al.</i> 2001      | 1 (15)            |
|                          | Bowen 2011                     | 1 (25)            |
|                          | Di Beneditto 2001              | 1 (0)             |
|                          | Gannon and Waples 2004         | 1 (146)           |
|                          | Gonzalez <i>et al.</i> 1994    | 1 (14)            |
|                          | Gunter 1942                    | 1 (29)            |
|                          | Leatherwood 1975               | 1 (1)             |
|                          | Leatherwood <i>et al.</i> 1978 | 1 (8)             |
|                          | Mead and Potter 1990           | 2 (64)            |
|                          | Melo et al 2010                | $\frac{1}{1}$ (4) |
|                          | Pate and McFee 2012            | 2 (82)            |
|                          | Santos et al 2001              | $\frac{1}{1}(10)$ |
|                          | Santos et al 2007              | 1 (82)            |
|                          | Spitz et al 2006               | 1 (21)            |
| Spotted dolphin          | Di Beneditto 2001              | 1 (6)             |
|                          | Melo <i>et al.</i> 2010        | 1 (10)            |
| (4) Sea birds            |                                | 60 (74,403)       |
| Audouin's gull           | Pedrocchi <i>et al</i> 1996    | 2 (261)           |
| Audubon shearwater       | Catry et al 2009               | 1(60)             |
| Bald eagle               | Dugoni et al. 1986             | 1 (10)            |
| Dala cagio               | Markham and Watts 2008         | 1 (765)           |
|                          | McEwan and Hirth 1980          | 1 (16)            |
|                          | Ofelt 1975                     | 1 (116)           |
|                          | Retfalvi 1970                  | 1 (61)            |
| Brown pelican            | Baldwin 1946                   | 1 (0)             |
| Drown policali           | Blus et al. 1979               | 1 (0)             |
|                          | Fogarty et al 1981             | 1 (113)           |
|                          | Shorger 1962                   | 1 (32)            |
| Caspian tern             | Lyons et al. 2005              | 2(5103)           |
| Capital tell             | Thompson $et al. 2002$         | 1 (1 540)         |
| Common loon              | Barr 1996                      | 1 (55)            |
| Common tern              | Bugoni an Vooren 2004          | 1 (714)           |
| Cormorant                | Anderson <i>et al.</i> 2004    | 1 (65)            |
| Combian                  | Blackwell et al 1997           | 1 (329)           |
|                          | Campo et al 1993               | 1 (420)           |
|                          | Liordos and Goutner 2007       | 3 (57)            |
|                          | Rail and Chapdelaine 1998      | 2 (613)           |

| Cormorant   Robertson 1974<br>Seefelt and Gillingham 2008   1 (1,040)     Cory shearwater   Grandeiro et al. 1998   1 (1,59)     Frigatebird   Calixto Albarran and Osorno 2000   1 (158)     Schreiber and Hensley 1976   1 (89)     Spear et al. 2007   1 (4)     Gannet   Berruit et al. 1993   2 (11,681)     Moseley 2010   2 (78)     Gullbilled tern   Dies et al. 2005   1 (1,091)     Erwin et al. 1993   2 (11,681)     Moseley 2010   2 (78)     Gullbilled tern   Dies et al. 2005   1 (1,091)     Erwin et al. 1993   1 (151)     Kubetzki and Garthe 2003   1 (323)     Lesser blackbacked gull   Kubetzki and Garthe 2003   1 (327)     Masked booby   Schreiber and Hensley 1976   1 (36)     Mergenser   Bur et al. 2007   1 (18)     Mergenser   Bur et al. 2008   1 (144)     Neotropical cormorant   King 1889   1 (0)     Osprey   Glass Watts 2009   2 (29)     McLean and Byrd 1991   1 (0)     Royal tern                                                                                                                                                                                                                                                    | Functional group/species | Reference                          | Observations      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|-------------------|
| Cormorant   Robertson 1974   1 (0)     Seefelt and Gillingham 2008   1 (1,040)     Withers and Brooks 2004   2 (76)     Cory shearwater   Grandeiro et al. 1998   1 (159)     Xavier et al. 2011   1 (79)     Frigatebird   Calixto Albarran and Osorno 2000   1 (158)     Schreiber and Hensley 1976   1 (89)     Spear et al. 2007   1 (4)     Gannet   Berruti et al. 1993   2 (11,681)     Moseley 2010   2 (78)     Gullbilled tern   Dies et al. 2005   1 (1,091)     Erwin et al. 1998   1 (757)     Herring gull   Ewins et al. 1994   1 (151)     Kubetzki and Garthe 2003   1 (323)     Lesser blackbacked gull   Kubetzki and Garthe 2003   1 (327)     Masked booby   Schreiber and Hensley 1976   1 (36)     Spear et al. 2007   1 (18)     Mergenser   Bur et al. 2007   1 (18)     Mergenser   Bur et al. 2007   1 (18)     Royal tern   Aygen 2005   1 (45,212)     Sandwich tern   Schealer 1998   1 (0                                                                                                                                                                                                                                                             |                          | Telefence                          | (Stomachs)        |
| Seefelt and Gillingham 20081 (1,040)Withers and Brooks 20042 (76)Cory shearwaterGrandeiro et al. 19981 (159)Xavier et al. 20111 (79)FrigatebirdCalixto Albarran and Osorno 20001 (158)Schreiber and Hensley 19761 (89)Spear et al. 20071 (4)GannetBerruti et al. 19932 (11,681)Moseley 20102 (78)Gullbilled ternDies et al. 20051 (1,091)Erwin et al. 19941 (151)Kubetzki and Garthe 20031 (323)Lesser blackbacked gullKubetzki and Garthe 20031 (327)Masked boobySchreiber and Hensley 19761 (36)Spear et al. 20071 (18)MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternAygen 20051 (45,212)Sandwich ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (55)Mariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Storm petrelSpear et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterSpear et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterSpear et al. 20072 (741) <td>Cormorant</td> <td>Robertson 1974</td> <td>1 (0)</td>                             | Cormorant                | Robertson 1974                     | 1 (0)             |
| Withers and Brooks 2004   2 (76)     Cory shearwater   Grandeiro et al. 1998   1 (159)     Xavier et al. 2011   1 (79)     Frigatebird   Calixto Albarran and Osorno 2000   1 (158)     Schreiber and Hensley 1976   1 (89)     Spear et al. 2007   1 (4)     Gannet   Berruti et al. 1993   2 (11,681)     Moseley 2010   2 (78)     Gullbilled tern   Dies et al. 2005   1 (1,091)     Erwin et al. 1993   1 (757)     Herring gull   Ewins et al. 1994   1 (151)     Kubetzki and Garthe 2003   1 (327)     Masked booby   Schreiber and Hensley 1976   1 (36)     Spear et al. 2007   1 (18)     Mergenser   Bur et al. 2007   1 (18)     Mergenser   Bur et al. 2007   1 (144)     Neotropical cormorant   King 1989   1 (0)     Osprey   Glass Watts 2009   2 (29)     McLean and Byrd 1991   1 (0)     Royal tern   Schealer 1998   1 (106)     Shearwater   Speaer et al. 2007   1 (55)                                                                                                                                                                                                                                                                                      |                          | Seefelt and Gillingham 2008        | 1 (1,040)         |
| Cory shearwaterGrandeiro et al. 19981 (159)Yavier et al. 20111 (79)FrigatebirdCalixto Albarran and Osorno 20001 (158)Schreiber and Hensley 19761 (89)Spear et al. 20071 (4)GannetBerruti et al. 19932 (11,681)Moseley 20102 (78)Gullbilled ternDies et al. 20051 (1,091)Erwin et al. 19981 (757)Herring gullEwins et al. 19941 (151)Kubetzki and Garthe 20031 (322)Masked boobySchreiber and Hensley 19761 (36)Spear et al. 20071 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)ShearwaterSpear et al. 20071 (31)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Storm petrelSpear et al. 20071 (58)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterSpear et al. 20071 (584)Storm petrelSpear et al. 20071 (584)(5) Sea turtlesTidholt and Anderson 19951 (682)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjordal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (1                                                                                                      |                          | Withers and Brooks 2004            | 2 (76)            |
| Kavier et al. 20111 (79)FrigatebirdCalixto Albarran and Osorno 20001 (158)Schreiber and Hensley 19761 (89)Spear et al. 20071 (4)GannetBerruti et al. 19932 (11,681)Moseley 20102 (78)Gullbilled ternDies et al. 20051 (1,091)Erwin et al. 19981 (757)Herring gullEwins et al. 19941 (151)Kubetzki and Garthe 20031 (323)Lesser blackbacked gullKubetzki and Garthe 20031 (327)Masked boobySchreiber and Hensley 19761 (18)MergenserBur et al. 20071 (14)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)ShearwaterSpear et al. 20071 (31)ShimmerMariano de al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichvich et al. 19931 (17)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (10)Shaver 19911 (10) </td <td>Cory shearwater</td> <td>Grandeiro <i>et al.</i> 1998</td> <td>1 (159)</td> | Cory shearwater          | Grandeiro <i>et al.</i> 1998       | 1 (159)           |
| Frigatebird Calixto Albarran and Osorno 2000 1 (158)   Schreiber and Hensley 1976 1 (89)   Spear et al. 2007 1 (4)   Gannet Berruti et al. 1993 2 (11,681)   Moseley 2010 2 (78)   Gullbilled tern Dies et al. 2005 1 (1,091)   Erwin et al. 1993 1 (151)   Kubetzki and Garthe 2003 1 (323)   Lesser blackbacked gull Kubetzki and Garthe 2003 1 (36)   Masked booby Schreiber and Hensley 1976 1 (36)   Spear et al. 2007 1 (14)   Neotropical cormorant King 1989 1 (0)   Osprey Glass Watts 2009 2 (29)   McLean and Byrd 1991 1 (0)   Royal tern Aygen 2005 1 (45,212)   Sandwich tern Schealer 1998 1 (106)   Shearwater Spear et al. 2007 1 (31)   Skimmer Mariano de al. 2007 1 (55)   Mariano Jelicich et al. 2003 1 (106)   Shearwater Spear et al. 2007 2 (741)   Wedgetailed shearwater Catry et al. 2007 2 (741)   Wedgetailed shearwater                                                                                                                                                                                                                                                                                                                               |                          | Xavier <i>et al.</i> 2011          | 1 (79)            |
| Schreiber and Hensley 19761 (89)<br>Spear et al. 20071 (4)GannetBerruti et al. 19932 (11,681)<br>Moseley 20102 (78)Gullbilled ternDies et al. 20051 (1,091)<br>Erwin et al. 19981 (757)Herring gullEwins et al. 19941 (151)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frigatebird              | Calixto Albarran and Osorno 2000   | 1 (158)           |
| Spear et al. 2007   1 (4)     Gannet   Berruti et al. 1993   2 (11,681)     Moseley 2010   2 (78)     Gullbilled tern   Dies et al. 2005   1 (1,091)     Erwin et al. 1998   1 (757)     Herring gull   Ewins et al. 1994   1 (151)     Kubetzki and Garthe 2003   1 (323)     Lesser blackbacked gull   Kubetzki and Garthe 2003   1 (327)     Masked booby   Schreiber and Hensley 1976   1 (36)     Spear et al. 2007   1 (18)     Mergenser   Bur et al. 2008   1 (144)     Neotropical cormorant   King 1989   1 (0)     Osprey   Glass Watts 2009   2 (29)     McLean and Byrd 1991   1 (0)     Royal tern   Aygen 2005   1 (45,212)     Sandwich tern   Schealer 1998   1 (106)     Shearwater   Spear et al. 2007   1 (31)     Skimmer   Mariano Jelicich et al. 2003   1 (1,034)     Storm petrel   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Spear et al. 2009   1 (70)     Whit                                                                                                                                                                                                                                                                            | -                        | Schreiber and Hensley 1976         | 1 (89)            |
| GannetBerruti et al. 1993<br>Moseley 2010 $2$ (11,681)<br>Moseley 2010Gullbilled ternDies et al. 2005<br>Erwin et al. 19981 (151)<br>(10,91)Herring gullEwins et al. 19941 (151)<br>Kubetzki and Garthe 20031 (323)Lesser blackbacked gullKubetzki and Garthe 20031 (327)Masked boobySchreiber and Hensley 19761 (36)<br>Spear et al. 20071 (18)MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)<br>McLean and Byrd 19911 (0)Royal ternAygen 20051 (45,212)Sandwich ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (55)<br>Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)1 (6)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                         |                          | Spear <i>et al.</i> 2007           | 1 (4)             |
| Gullbilled ternMoseley 2010 $2 (78)$ Gullbilled ternDies et al. 20051 (1,091)Herring gullEwins et al. 19981 (757)Herring gullEwins et al. 19941 (151)Lesser blackbacked gullKubetzki and Garthe 20031 (323)Lesser blackbacked gullKubetzki and Garthe 20031 (327)Masked boobySchreiber and Hensley 19761 (36)MergenserBur et al. 20071 (18)MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternAygen 20051 (45,212)Sandwich ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)( <b>5) Sea turtles</b> Tiofolt and Anderson 19951 (584)( <b>5) Sea turtles</b> Barichivich et al. 19931 (17)Burke et al. 19931 (17)Burke et al. 19931 (12)Burke et al. 19931 (12)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)Shaver 19911 (101)                                                                                                                   | Gannet                   | Berruti et al. 1993                | 2 (11,681)        |
| Gullbilled ternDies et al. 20051 (1,091)Herring gullErwin et al. 19981 (757)Herring gullEwins et al. 19941 (151)Lesser blackbacked gullKubetzki and Garthe 20031 (323)Masked boobySchreiber and Hensley 19761 (36)Masked boobySchreiber and Hensley 19761 (36)MergenserBur et al. 20071 (18)MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19931 (12)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                    |                          | Moseley 2010                       | 2 (78)            |
| Herring gullErwin et al. 1998 $1 (757)$ Herring gullEwins et al. 1994 $1 (151)$ Kubetzki and Garthe 2003 $1 (323)$ Lesser blackbacked gullKubetzki and Garthe 2003 $1 (327)$ Masked boobySchreiber and Hensley 1976 $1 (36)$ Spear et al. 2007 $1 (18)$ MergenserBur et al. 2008 $1 (144)$ Neotropical cormorantKing 1989 $1 (0)$ OspreyGlass Watts 2009 $2 (29)$ McLean and Byrd 1991 $1 (0)$ Royal ternAygen 2005 $1 (45,212)$ Sandwich ternSchealer 1998 $1 (106)$ ShearwaterSpear et al. 2007 $1 (31)$ SkimmerMariano et al. 2007 $1 (55)$ Mariano Jelicich et al. 2003 $1 (1,034)$ Sooty ternHensley and Hensley 1995 $1 (NA)$ Storm petrelSpear et al. 2007 $2 (741)$ Wedgetailed shearwaterCatry et al. 2009 $1 (70)$ White pelicanFindholt and Anderson 1995 $1 (5632)$ Green turtleMakowski et al. 2006 $1 (6)$ Hawksbill turtleLeon and Bjorndal 2002 $2 (48)$ Kemps ridley turtleBarichivich et al. 1993 $1 (12)$ Burke et al. 1994 $1 (19)$ Seney and Musick 2003 $1 (23)$ Shaver 1991 $1 (101)$                                                                                                                                                                         | Gullbilled tern          | Dies <i>et al.</i> 2005            | 1 (1,091)         |
| Herring gullEwins et al. 19941 (151)Kubetzki and Garthe 20031 (323)Lesser blackbacked gullKubetzki and Garthe 20031 (327)Masked boobySchreiber and Hensley 19761 (36)Spear et al. 20071 (18)MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternAygen 20051 (45,212)Sandwich ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterSpear et al. 20072 (741)White pelicanFindholt and Anderson 19951 (584)( <b>5) Sea turtles</b> 15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19931 (12)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                         |                          | Erwin <i>et al.</i> 1998           | 1 (757)           |
| Kubetzki and Garthe 20031 (323)Lesser blackbacked gullKubetzki and Garthe 20031 (327)Masked boobySchreiber and Hensley 19761 (36)Spear et al. 20071 (18)MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterSpear et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                        | Herring gull             | Ewins <i>et al.</i> 1994           | 1 (151)           |
| Lesser blackbacked gull   Kubetzki and Garthe 2003   1 (327)     Masked booby   Schreiber and Hensley 1976   1 (36)     Mergenser   Bur et al. 2007   1 (18)     Neotropical cormorant   King 1989   1 (0)     Osprey   Glass Watts 2009   2 (29)     McLean and Byrd 1991   1 (0)     Royal tern   Aygen 2005   1 (45,212)     Sandwich tern   Schealer 1998   1 (106)     Shearwater   Spear et al. 2007   1 (31)     Skimmer   Mariano Jelicich et al. 2003   1 (1,034)     Sooty tern   Hensley and Hensley 1995   1 (NA)     Storm petrel   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Findholt and Anderson 1995   1 (532)     Green turtles   Makowski et al. 2006   1 (6)     Hawksbill turtle   Leon and Bjorndal 2002   2 (48)     Kemps ridley turtle   Barichivich et al. 1999   1 (17)     Burke et al. 1993   1 (12)   Burke et al. 1994   1 (19)                                                                                                                                                                                                                                               | 5.5                      | Kubetzki and Garthe 2003           | 1 (323)           |
| Masked booby   Schreiber and Hensley 1976   1 (36)     Mergenser   Bur et al. 2007   1 (18)     Neotropical cormorant   King 1989   1 (0)     Osprey   Glass Watts 2009   2 (29)     McLean and Byrd 1991   1 (0)     Royal tern   Aygen 2005   1 (45,212)     Sandwich tern   Schealer 1998   1 (106)     Shearwater   Spear et al. 2007   1 (31)     Skimmer   Mariano et al. 2007   1 (55)     Mariano Jelicich et al. 2003   1 (104)     Storm petrel   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Catry et al. 2009   1 (70)     White pelican   Findholt and Anderson 1995   1 (532)     Green turtle   Makowski et al. 2006   1 (6)     Hawksbill turtle   Leon and Bjorndal 2002   2 (48)     Kemps ridley turtle   Barichivich et al. 1999   1 (17)     Burke et al. 1993   1 (12)   Burke et al. 1994   1 (19)     Seney and Musick 2003   1 (23)                                                                                                                                                                                                                                                   | Lesser blackbacked gull  | Kubetzki and Garthe 2003           | 1 (327)           |
| Spear et al. 2007   1 (18)     Mergenser   Bur et al. 2008   1 (144)     Neotropical cormorant   King 1989   1 (0)     Osprey   Glass Watts 2009   2 (29)     McLean and Byrd 1991   1 (0)     Royal tern   Aygen 2005   1 (45,212)     Sandwich tern   Schealer 1998   1 (106)     Shearwater   Spear et al. 2007   1 (31)     Skimmer   Mariano et al. 2007   1 (55)     Mariano Jelicich et al. 2003   1 (1,034)     Sooty tern   Hensley and Hensley 1995   1 (NA)     Storm petrel   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Catry et al. 2009   1 (70)     White pelican   Findholt and Anderson 1995   1 (584)     (5) Sea turtles   15 (632)     Green turtle   Makowski et al. 2006   1 (6)     Hawksbill turtle   Leon and Bjorndal 2002   2 (48)     Kemps ridley turtle   Barichivich et al. 1999   1 (17)     Burke et al. 1993   1 (12)   Burke et al. 1993   1 (12)     Burke et al. 1994<                                                                                                                                                                                                                                                           | Masked booby             | Schreiber and Hensley 1976         | 1 (36)            |
| MergenserBur et al. 20081 (144)Neotropical cormorantKing 19891 (0)OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternAygen 20051 (45,212)Sandwich ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Spear <i>et al.</i> 2007           | 1 (18)            |
| Neotropical cormorant<br>OspreyKing 1989 $1 (0)$ Royal tern<br>Sandwich ternGlass Watts 2009<br>McLean and Byrd 1991 $1 (0)$ Royal tern<br>Sandwich ternAygen 2005 $1 (45,212)$ Sandwich tern<br>ShearwaterSchealer 1998 $1 (106)$ ShearwaterSpear et al. 2007 $1 (31)$ SkimmerMariano et al. 2007 $1 (55)$ Mariano Jelicich et al. 2003 $1 (1,034)$ Sooty ternHensley and Hensley 1995 $1 (NA)$ Storm petrelSpear et al. 2007 $2 (741)$ Wedgetailed shearwaterCatry et al. 2009 $1 (70)$ White pelicanFindholt and Anderson 1995 $1 (584)$ (5) Sea turtles15 (632)Green turtleMakowski et al. 2006 $1 (6)$ Hawksbill turtleLeon and Bjorndal 2002 $2 (48)$ Kemps ridley turtleBarichivich et al. 1999 $1 (17)$ Burke et al. 1993 $1 (12)$ Burke et al. 1994 $1 (19)$ Seney and Musick 2003 $1 (23)$ Shaver 1991 $1 (101)$                                                                                                                                                                                                                                                                                                                                                           | Mergenser                | Bur <i>et al.</i> 2008             | 1 (144)           |
| OspreyGlass Watts 20092 (29)McLean and Byrd 19911 (0)Royal ternAygen 20051 (45,212)Sandwich ternSchealer 19981 (106)ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Neotropical cormorant    | King 1989                          | 1 (0)             |
| McLean and Byrd 1991 1 (0)   Royal tern Aygen 2005 1 (45,212)   Sandwich tern Schealer 1998 1 (106)   Shearwater Spear et al. 2007 1 (31)   Skimmer Mariano et al. 2007 1 (55)   Mariano Jelicich et al. 2003 1 (1,034)   Sooty tern Hensley and Hensley 1995 1 (NA)   Storm petrel Spear et al. 2007 2 (741)   Wedgetailed shearwater Catry et al. 2009 1 (70)   White pelican Findholt and Anderson 1995 1 (584)   (5) Sea turtles 15 (632)   Green turtle Makowski et al. 2006 1 (6)   Hawksbill turtle Leon and Bjorndal 2002 2 (48)   Kemps ridley turtle Barichivich et al. 1999 1 (17)   Burke et al. 1993 1 (12)   Burke et al. 1994 1 (19)   Seney and Musick 2003 1 (23)   Shaver 1991 1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Osprev                   | Glass Watts 2009                   | 2 (29)            |
| Royal tern   Aygen 2005   1 (45,212)     Sandwich tern   Schealer 1998   1 (106)     Shearwater   Spear et al. 2007   1 (31)     Skimmer   Mariano et al. 2007   1 (55)     Mariano Jelicich et al. 2003   1 (1,034)     Sooty tern   Hensley and Hensley 1995   1 (NA)     Storm petrel   Spear et al. 2007   2 (741)     Wedgetailed shearwater   Catry et al. 2009   1 (584)     (5) Sea turtles   15 (632)     Green turtle   Makowski et al. 2006   1 (6)     Hawksbill turtle   Leon and Bjorndal 2002   2 (48)     Kemps ridley turtle   Barichivich et al. 1999   1 (17)     Burke et al. 1993   1 (12)     Burke et al. 1994   1 (19)     Seney and Musick 2003   1 (23)     Shaver 1991   1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | McLean and Bvrd 1991               | 1 (0)             |
| Sandwich tern Schealer 1998 1 (106)   Shearwater Spear et al. 2007 1 (31)   Skimmer Mariano et al. 2007 1 (55)   Mariano Jelicich et al. 2003 1 (1,034)   Sooty tern Hensley and Hensley 1995 1 (NA)   Storm petrel Spear et al. 2007 2 (741)   Wedgetailed shearwater Catry et al. 2009 1 (70)   White pelican Findholt and Anderson 1995 1 (584)   (5) Sea turtles 15 (632)   Green turtle Makowski et al. 2006 1 (6)   Hawksbill turtle Leon and Bjorndal 2002 2 (48)   Kemps ridley turtle Barichivich et al. 1999 1 (12)   Burke et al. 1993 1 (12)   Burke et al. 1994 1 (19)   Seney and Musick 2003 1 (23)   Shaver 1991 1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roval tern               | Avgen 2005                         | 1 (45,212)        |
| ShearwaterSpear et al. 20071 (31)SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sandwich tern            | Schealer 1998                      | 1 (106)           |
| SkimmerMariano et al. 20071 (55)Mariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shearwater               | Spear et al. 2007                  | 1 (31)            |
| NumberMariano Jelicich et al. 20031 (1,034)Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skimmer                  | Mariano et al 2007                 | 1 (55)            |
| Sooty ternHensley and Hensley 19951 (NA)Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | Mariano Jelicich <i>et al</i> 2003 | 1 (1 034)         |
| Storm petrelSpear et al. 20072 (741)Wedgetailed shearwaterCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sooty tern               | Hensley and Hensley 1995           | 1 (NA)            |
| Wedgetailed shearwater<br>White pelicanCatry et al. 20091 (70)White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Storm petrel             | Spear et al. 2007                  | 2 (741)           |
| White pelicanFindholt and Anderson 19951 (584)(5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wedgetailed shearwater   | Catry et al. 2009                  | $\frac{1}{1}(70)$ |
| (5) Sea turtles15 (632)Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | White pelican            | Findholt and Anderson 1995         | 1 (584)           |
| Green turtleMakowski et al. 20061 (6)Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5) Sea turtles          |                                    | 15 (632)          |
| Hawksbill turtleLeon and Bjorndal 20022 (48)Kemps ridley turtleBarichivich et al. 19991 (17)Burke et al. 19931 (12)Burke et al. 19941 (19)Seney and Musick 20031 (23)Shaver 19911 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Green turtle             | Makowski e <i>t al.</i> 2006       | 1 (6)             |
| Kemps ridley turtle Barichivich et al. 1999 1 (17)   Burke et al. 1993 1 (12)   Burke et al. 1994 1 (19)   Seney and Musick 2003 1 (23)   Shaver 1991 1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hawksbill turtle         | Leon and Biorndal 2002             | 2 (48)            |
| Burke et al. 1993 1 (12)   Burke et al. 1994 1 (19)   Seney and Musick 2003 1 (23)   Shaver 1991 1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kemps ridley turtle      | Barichivich et al 1999             | 1 (17)            |
| Burke et al. 1994 1 (19)   Seney and Musick 2003 1 (23)   Shaver 1991 1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Burke et al. 1993                  | 1 (12)            |
| Seney and Musick 2003   1 (23)     Shaver 1991   1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Burke et al. 1994                  | 1 (19)            |
| Shaver 1991 1 (101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | Seney and Musick 2003              | 1 (23)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | Shaver 1991                        | 1 (101)           |
| Witzell and Schmid 2005 2 (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Witzell and Schmid 2005            | 2 (65)            |
| Loggerhead turtle Burke et al 1993 1 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l oggerhead turtle       | Burke et al. 1993                  | 1 (25)            |
| Parker <i>et al.</i> 2005 1 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Parker et al 2005                  | 1 (52)            |
| Plotkin <i>et al.</i> 1993 1 (82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Plotkin et al. 1993                | 1 (82)            |
| Seney and Musick 2007 1 (128)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Senev and Musick 2007              | 1 (128)           |

| Functional group/species | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Observations     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Stomachs)       |
| Loggerhead turtle        | Tomas <i>et al.</i> 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (54)           |
| (6) Blacktip shark       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 (1,923)       |
| Blacktip shark           | Barry 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (139)          |
|                          | Barry 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (139)          |
|                          | Bethea et al. 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 (146)          |
|                          | Castro 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (174)          |
|                          | de Silva 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (19)           |
|                          | Dudley and Cliff 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (655)          |
|                          | Gurshin 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (14)           |
|                          | Heupel and Hueter 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (464)          |
|                          | Hoffmayer and Parsons 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (50)           |
|                          | Hueter 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (65)           |
|                          | Patokina and Litvinov 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (3)            |
|                          | Tavares 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (52)           |
|                          | Wrast 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (3)            |
| (7) Dusky shark          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 (2,505)       |
| Dusky shark              | Bowman <i>et al.</i> 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 (43)           |
|                          | Clarke and von Schmidt 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (0)            |
|                          | de Silva 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (2)            |
|                          | Gelsleichter et al. 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (59)           |
|                          | Hussey <i>et al.</i> 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 (900)          |
|                          | Rogers et al. 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 (32)           |
|                          | Simpfendorfer <i>et al.</i> 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 (1,322)        |
| <i>/</i> ->              | Smale 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (147)          |
| (8) Sandbar shark        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 (2,396)       |
| Sandbar shark            | Bowman <i>et al.</i> 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (3)            |
|                          | Clark and Von Schmidt 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (110)          |
|                          | de Silva 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (1)            |
|                          | Dudley and Cliff 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (92)           |
|                          | Ellis and Musick 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 (232)          |
|                          | McElroy 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (650)          |
|                          | McElroy et al. 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 (263)          |
|                          | Medved et al. 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 (340)          |
|                          | Papamastiou <i>et al.</i> 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (269)          |
|                          | Stevens and McLoughlin 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (115)          |
|                          | Stillwell and Kohler 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(321)           |
| (9) Large coastal sharks | Cliff and Dudlay 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58 (5,696)       |
| Buil Shark               | Cilli and Dudley 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 (309)          |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (2)            |
|                          | ue Silva 2001<br>Hustor 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (O)<br>1 (G)   |
|                          | $ \begin{array}{c} \square U \in [U] \\ \square U \cap U \subseteq [U] \\ \square U \cup U \subseteq [U] \\ \square U \cup U \cap U \\ \square U \cup U \cup U \cap [U] \\ \square U \cup [U] \\ \square U \cup U \cup U \cup U \cup [U] \\ \square U \cup U$ | 1 (0)            |
|                          | June 1076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (00)<br>2 (42) |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z (4Z)           |

| Functional group/species | Reference                           | Observations |
|--------------------------|-------------------------------------|--------------|
|                          |                                     | (Stomachs)   |
| Carcharhinus             | Knapp 1949                          | 1 (126)      |
| Great hammerhead         | Cliff 1995                          | 2 (119)      |
|                          | Hueter 1994                         | 1 (5)        |
| Lemon shark              | Cortes and Gruber 1990              | 2 (142)      |
|                          | Davis 2010                          | 1 (30)       |
|                          | Newman <i>et al.</i> 2010           | 2 (396)      |
|                          | Randall 1967                        | 1 (1)        |
|                          | Schmidt 1986                        | 1 (18)       |
| Sand tiger shark         | Bowman <i>et al.</i> 2000           | 2 (8)        |
|                          | Clark and Von Schmidt 1965          | 1 (4)        |
|                          | Gelsleichter et al. 1999            | 1 (42)       |
|                          | Smale 2005                          | 2 (0)        |
| Scalloped hammerhead     | Avendano Alvarez <i>et al.</i> 2013 | 1 (12)       |
|                          | Bethea <i>et al.</i> 2011           | 1 (186)      |
|                          | Bowman <i>et al.</i> 2000           | 1 (2)        |
|                          | Bush 2003                           | 1 (0)        |
|                          | de Bruyn <i>et al.</i> 2005         | 1 (832)      |
|                          | Galvan Magana <i>et al.</i> 2013    | 2 (213)      |
|                          | Hueter 1994                         | 1 (4)        |
|                          | Hussey <i>et al.</i> 2011           | 3 (1,018)    |
|                          | Patokina and Litvinov 2005          | 1 (7)        |
|                          | Stevens and Lyle 1986               | 1 (518)      |
|                          | Tores Rojas <i>et al.</i> 2010      | 1 (187)      |
| Silky shark              | Bowman <i>et al.</i> 2000           | 1 (18)       |
| •                        | Cabrera Chavez Costa et al. 2010    | 2 (142)      |
|                          | de Silva 2001                       | 1 (3)        |
|                          | Galvan Magana <i>et al.</i> 2013    | 1 (142)      |
| Spinner shark            | Allen and Cliff 2000                | 1 (379)      |
|                          | Avendano Alvarez <i>et al.</i> 2013 | 1 (33)       |
|                          | Bethea <i>et al.</i> 2004           | 1 (0)        |
|                          | de Silva 2001                       | 1 (5)        |
|                          | Hueter 1994                         | 1 (1)        |
|                          | Stevens and McLoughlin 1991         | 1 (51)       |
| Tiger shark              | Bowman <i>et al.</i> 2000           | 1 (40)       |
| C                        | Lowe <i>et al.</i> 1996             | 3 (217)      |
|                          | Papamastiou <i>et al.</i> 2006      | 1 (217)      |
|                          | Randall 1967                        | 1 (2)        |
|                          | Simpfendorfer et al. 2001           | 1 (84)       |
|                          | Stevens and McLoughlin 1991         | 1 (77)       |
| (10) Large oceanic shark | S J                                 | 32 (3,979)   |
| Bigeye thresher          | Bowman <i>et al.</i> 2000           | 1 (12)       |
| <u> </u>                 | Galvan Magana <i>et al.</i> 2013    | 1 (107)      |
|                          | Gorni <i>et al.</i> 2013            | 1 (16)       |

| Functional group/species  | Reference                           | Observations |
|---------------------------|-------------------------------------|--------------|
|                           |                                     | (Stomachs)   |
| Bigeye thresher           | Preti <i>et al.</i> 2008            | 1 (23)       |
| Blue shark                | Bowman <i>et al.</i> 2000           | 1 (582)      |
|                           | Clark <i>et al.</i> 1996            | 1 (112)      |
|                           | Henderson <i>et al.</i> 2001        | 1 (126)      |
|                           | Kubodera <i>et al.</i> 2007         | 1 (57)       |
|                           | Lopez <i>et al.</i> 2010            | 1 (172)      |
|                           | Markaida and Sosa hishizaki 2010    | 1 (614)      |
|                           | Preti <i>et al.</i> 2012            | 1 (114)      |
|                           | Stevens 1973                        | 1 (50)       |
|                           | Vaske <i>et al.</i> 2009            | 2 (222)      |
|                           | Young <i>et al.</i> 2010            | 2 (147)      |
| Common thresher           | Bowman <i>et al.</i> 2000           | 1 (18)       |
|                           | Preti <i>et al.</i> 2001            | 1 (107)      |
|                           | Preti <i>et al.</i> 2012            | 1 (157)      |
|                           | Rogers <i>et al.</i> 2012           | 1 (17)       |
| Shortfin mako             | Bowman <i>et al.</i> 2000           | 1 (273)      |
|                           | Cliff et al. 1990                   | 2 (88)       |
|                           | Gorni <i>et al.</i> 2013            | 1 (47)       |
|                           | Maia <i>et al.</i> 2006             | 3 (99)       |
|                           | Preti et al. 2012                   | 1 (238)      |
|                           | Rogers et al. 2012                  | 1 (45)       |
|                           | Stillwell and Kohler 1982           | 1 (399)      |
|                           | Wood <i>et al.</i> 2009             | 1 (120)      |
|                           | Young et al. 2010                   | 1 (17)       |
| (11) Atlantic sharphose s | hark                                | 20 (1.039)   |
| Atlantic sharphose shark  | Avendano Alvarez <i>et al.</i> 2013 | 1 (25)       |
|                           | Barry 2002                          | 1 (25)       |
|                           | Bethea <i>et al.</i> 2004           | 3 (185)      |
|                           | Bethea <i>et al.</i> 2006           | 3 (222)      |
|                           | Bowman <i>et al.</i> 2000           | 3 (63)       |
|                           | Clark and Von Schmidt 1965          | 1 (22)       |
|                           | Davis 2010                          | 1 (25)       |
|                           | Divita <i>et al.</i> 1983           | 1 (7)        |
|                           | Gelsleichter et al. 1999            | 1 (129)      |
|                           | Gurshin 2005                        | 1 (86)       |
|                           | Hoffmaver and Parsons 2003          | 1 (133)      |
|                           | Hueter 1994                         | 1 (10)       |
|                           | McAllister 2012                     | 2 (107)      |
| (12) Small coastal sharks |                                     | 33 (2.813)   |
| Blacknose shark           | Fischer <i>et al.</i> 2009          | 1 (19)       |
|                           | Ford 2012                           | 1 (38)       |
|                           | Gomez <i>et al.</i> 2004            | 1 (13)       |
|                           | Hueter 1994                         | 1 (13)       |

| Functional group/species | Reference                       | Observations |
|--------------------------|---------------------------------|--------------|
|                          |                                 | (Stomachs)   |
| Bonnethead shark         | Bethea <i>et al.</i> 2007       | 7 (502)      |
|                          | Cortes <i>et al.</i> 1996       | 1 (338)      |
|                          | Divita <i>et al.</i> 1983       | 1 (4)        |
|                          | Gurshin 2005                    | 1 (5)        |
|                          | Hueter 1994                     | 1 (314)      |
|                          | Lessa and Almeida 1998          | 1 (191)      |
|                          | Lopez Peralta and Arcila 2002   | 1 (1)        |
|                          | Wrast <i>et al.</i> 2008        | 1 (4)        |
| Dusky smoothhound        | Bowman <i>et al.</i> 2000       | 4 (667)      |
|                          | Divita <i>et al.</i> 1983       | 1 (4)        |
|                          | Gelsleichter et al. 1999        | 1 (64)       |
|                          | Gomez <i>et al.</i> 2004        | 1 (8)        |
|                          | McElroy 1999                    | 1 (358)      |
|                          | Rountree and Able 1996          | 1 (85)       |
|                          | Steimle et al. 2000             | 1 (42)       |
| Finetooth shark          | Bethea <i>et al.</i> 2004       | 1 (55)       |
|                          | Castro 1993                     | 1 (49)       |
|                          | de Silva 2001                   | 1 (1)        |
|                          | Gurshin 2005                    | 1 (18)       |
|                          | Hoffmayer and Parsons 2003      | 1 (20)       |
| (13) Yellowfin tuna      | -                               | 27 (9,457)   |
| Yellowfin tuna           | Dissanayake <i>et al.</i> 2008  | 1 (71)       |
|                          | Dragovich and Potthoff 1972     | 1 (126)      |
|                          | Gorni <i>et al.</i> 2013        | 1 (29)       |
|                          | Kim <i>et al.</i> 1997          | 1 (175)      |
|                          | Landsdell and Young 2007        | 1 (368)      |
|                          | Lewis and Axelson 1967          | 1 (12)       |
|                          | Logan <i>et al.</i> 2013        | 1 (31)       |
|                          | Maldeniya 1996                  | 1 (NA)       |
|                          | Manooch and Mason 1983          | 1 (196)      |
|                          | Olsen and Boggs 1986            | 4 (3,581)    |
|                          | Olsen <i>et al.</i> 2014        | 1 (3,362)    |
|                          | Pimenta <i>et al.</i> 2001      | 1 (14)       |
|                          | Potier <i>et al.</i> 2004       | 1 (161)      |
|                          | Potier <i>et al.</i> 2007       | 1 (111)      |
|                          | Rawlins et al. 2007             | 1 (34)       |
|                          | Roger 1994                      | 1 (51)       |
|                          | Rohit <i>et al.</i> 2010        | 1 (146)      |
|                          | Rudershausen <i>et al.</i> 2010 | 1 (34)       |
|                          | Sabatie <i>et al.</i> 2003      | 1 (7)        |
|                          | Satoh <i>et al.</i> 2004        | 1 (47)       |
|                          | Vaske <i>et al.</i> 2003        | 1 (210)      |
|                          | Young et al. 2001               | 1 (39)       |

| Functional group/species | Reference                          | Observations<br>(Stomasha) |
|--------------------------|------------------------------------|----------------------------|
| Vellowfin tuna           | Vound et al 2010                   | 2 (652)                    |
| (14) Bluefin tuna        |                                    | 18 (2 265)                 |
| Bluefin tuna             | Battaglia <i>et al.</i> 2013       | 1 (123)                    |
| Blachin tana             | Butler 2007                        | 2 (352)                    |
|                          | Chase 2002                         | 5 (556)                    |
|                          | Engleston and Bochenek 1989        | 1 (72)                     |
|                          | Karakulak <i>et al.</i> 2009       | 1 (85)                     |
|                          | l ogan et al 2011                  | 3 (213)                    |
|                          | Pinkas 1971                        | 1 (650)                    |
|                          | Pleizier et al 2012                | 2 (54)                     |
|                          | Relini <i>et al.</i> 1995          | 1 (63)                     |
|                          | Sinopoli <i>et al.</i> 2004        | 1 (97)                     |
| (15) Other tuna          |                                    | 18 (2,857)                 |
| Bigeve tuna              | Gorni <i>et al.</i> 2013           | 1 (63)                     |
| g . ,                    | Kim <i>et al.</i> 1997             | 1 (161)                    |
|                          | Logan <i>et al.</i> 2013           | 1 (14)                     |
|                          | Pimenta et al. 2001                | 1 (̀NÁ́)                   |
|                          | Portier <i>et al.</i> 2004         | 1 (29)                     |
|                          | Satoh <i>et al.</i> 2004           | 1 (77)                     |
|                          | Vaske <i>et al.</i> 2012           | 1 (291)                    |
|                          | Young <i>et al.</i> 2010           | 2 (151)                    |
| Blackfin tuna            | Headley <i>et al.</i> 2009         | 1 (184)                    |
|                          | Manooch and Mason 1983             | 1 (89)                     |
| Skipjack tuna            | Ankenbrandt 1985                   | 1 (605)                    |
|                          | Batts 1972                         | 2 (317)                    |
|                          | Bernard et al. 1985                | 1 (31)                     |
|                          | Dragovich and Potthoff 1972        | 1 (711)                    |
|                          | Mendizabal 2013                    | 1 (83)                     |
|                          | Roger 1994                         | 1 (51)                     |
| (16) Billfish            |                                    | 43 (4,463)                 |
| Blue marlin              | Abitia Cardenas <i>et al.</i> 1999 | 1 (176)                    |
|                          | Abitia Cardenas <i>et al.</i> 2010 | 1 (40)                     |
|                          | Brock 1984                         | 1 (65)                     |
|                          | Cherel <i>et al.</i> 2007          | 1 (NA)                     |
|                          | Davies and Bortone 1976            | 1 (4)                      |
|                          | Ovchimmnikov 1970                  | 3 (0)                      |
|                          | Pimenta <i>et al.</i> 2001         | 1 (NA)                     |
|                          | Rawlins et al. 2007                | 1 (7)                      |
|                          | Rudershausen <i>et al.</i> 2010    | 1 (70)                     |
|                          | Sabatie et al. 2003                | 1 (NA)                     |
|                          | Saton <i>et al.</i> 2004           | 1(1/)                      |
|                          | Shimose et al. 2006                |                            |
|                          | vaske et al. 2004                  | 1 (41)                     |

| Functional group/species | Reference                          | Observations |
|--------------------------|------------------------------------|--------------|
|                          |                                    | (Stomachs)   |
| Blue marlin              | Vaske et al. 2011                  | 1 (156)      |
| Sailfish                 | Arizmendi Rodriguez et al. 2006    | 1 (533)      |
|                          | Bachok et al. 2004                 | 1 (13)       |
|                          | Casazza 2008                       | 2 (38)       |
|                          | Davies and Bortone 1976            | 1 (8)        |
|                          | Jolley 1977                        | 1 (568)      |
|                          | Knapp 1949                         | 1 (22)       |
|                          | Ovchimmnikov 1970                  | 1 (0)        |
|                          | Rawlins <i>et al.</i> 2007         | 1 (8)        |
|                          | Rosas Alayola <i>et al.</i> 2002   | 1 (576)      |
|                          | Satoh <i>et al.</i> 2004           | 1 (42)       |
|                          | Varghese <i>et al.</i> 2013        | 1 (252)      |
|                          | Vaske <i>et al.</i> 2004           | 1 (98)       |
|                          | Voss 1953                          | 1 (241)      |
| Spearfish                | Ovchimmnikov 1970                  | 1 (0)        |
|                          | Satoh <i>et al.</i> 2004           | 1 (53)       |
|                          | Vaske <i>et al.</i> 2004           | 1 (37)       |
| Striped marlin           | Abitia Cardenas <i>et al.</i> 1997 | 1 (350)      |
|                          | Moteki <i>et al.</i> 2001          | 1 (48)       |
| White marlin             | Davies and Bortone 1976            | 1 (38)       |
|                          | Gorni <i>et al.</i> 2012           | 1 (10)       |
|                          | Mather <i>et al.</i> 1975          | 1 (59)       |
|                          | Ovchimmnikov 1970                  | 1 (0)        |
|                          | Pinheiro <i>et al.</i> 2010        | 1 (220)      |
|                          | Rawlins <i>et al.</i> 2007         | 1 (14)       |
|                          | Satoh <i>et al.</i> 2004           | 1 (32)       |
|                          | Vaske <i>et al.</i> 2004           | 1 (120)      |
| (17) Swordfish           |                                    | 24 (2,458)   |
| Swordfish                | Bowman <i>et al.</i> 2000          | 1 (151)      |
|                          | Chancollon <i>et al.</i> 2006      | 1 (83)       |
|                          | Cherel et al. 2007                 | 1 (NA)       |
|                          | Clarke <i>et al.</i> 1995          | 1 (132)      |
|                          | Gorni <i>et al.</i> 2013           | 1 (101)      |
|                          | Hernandez Garcia 1995              | 1 (75)       |
|                          | Landsdell and Young 2007           | 1 (NA)       |
|                          | Logan <i>et al.</i> 2013           | 1 (69)       |
|                          | Markaida and Hochberg 2005         | 1 (37)       |
|                          | Moreira 1990                       | 1 (37)       |
|                          | Moteki et al. 2001                 | 1 (25)       |
|                          | Ovchimmnikov 1970                  | 1 (0)        |
|                          | Potier et al. 2007                 | 1 (130)      |
|                          | Relini <i>et al.</i> 1995          | 1 (126)      |
|                          | Romeo <i>et al.</i> 2008           | 1 (95)       |

| Functional group/species  | Reference                    | Observations |
|---------------------------|------------------------------|--------------|
|                           |                              | (Stomachs)   |
| Swordfish                 | Sabatie <i>et al.</i> 2003   | 1 (9)        |
|                           | Satoh <i>et al.</i> 2004     | 1 (32)       |
|                           | Scott and Tibbo 1968         | 1 (135)      |
|                           | Stillwell and Kohler 1985    | 1 (151)      |
|                           | Watanabe <i>et al.</i> 2009  | 1 (434)      |
|                           | Young <i>et al.</i> 2006     | 2 (196)      |
|                           | Young <i>et al.</i> 2010     | 2 (440)      |
| (18) Pelagic coastal pisc | ivores                       | 109 (17,514) |
| Almaco jack               | Barreiros <i>et al.</i> 2003 | 1 (193)      |
|                           | Casazza 2008                 | 2 (82)       |
|                           | Gomez <i>et al.</i> 2004     | 1 (3)        |
|                           | Manooch and Haimovici 1983   | 1 (49)       |
| Atlantic bonito           | Bowman <i>et al.</i> 2000    | 1 (1)        |
| Bar jack                  | Gomez <i>et al.</i> 2004     | 1 (1,164)    |
| -                         | Randall 1967                 | 1 (70)       |
| Black jack                | Randall 1967                 | 1 (2)        |
| Blue runner               | Casazza 2008                 | 2 (1,274)    |
|                           | Gomez <i>et al.</i> 2004     | 1 (0)        |
|                           | Keenan 2002                  | 1 (108)      |
|                           | Randall 1967                 | 1 (17)       |
|                           | Sley <i>et al.</i> 2009      | 1 (689)      |
| Bluefish                  | Bowman <i>et al.</i> 2000    | 1 (413)      |
|                           | Buckel <i>et al.</i> 1999    | 8 (1,011)    |
|                           | Gallaway <i>et al.</i> 1981  | 1 (0)        |
|                           | Gartland et al. 2006         | 1 (331)      |
|                           | Knapp 1949                   | 1 (12)       |
|                           | Naughton and Saloman 1984    | 15 (1,547)   |
| Bluntnose jack            | Gomez <i>et al.</i> 2004     | 1 (14)       |
| Bonito                    | Campo <i>et al.</i> 2006     | 1 (173)      |
| Cero                      | Gomez <i>et al.</i> 2004     | 1 (85)       |
|                           | Randall 1967                 | 1 (85)       |
| Chub mackerel             | Bowman <i>et al.</i> 2000    | 1 (24)       |
|                           | Divita <i>et al.</i> 1983    | 1 (14)       |
| Crevalle jack             | Austin and Austin 1971       | 1 (1)        |
|                           | Gomez <i>et al.</i> 2004     | 1 (75)       |
|                           | Knapp 1949                   | 1 (13)       |
|                           | Saloman and Naughton 1984    | 7 (2,193)    |
|                           | Wrast 2008                   | 1 (7)        |
| Dolphinfish               | Casazza 2008                 | 4 (160)      |
| •                         | Gomez <i>et al.</i> 2004     | 1 (0)        |
|                           | Knapp 1949                   | 1 (87)       |
|                           | Lewis and Axelson 1967       | 1 (70)       |
|                           | Logan <i>et al.</i> 2013     | 1 (11)       |

| Functional group/species              | Reference                              | Observations     |
|---------------------------------------|----------------------------------------|------------------|
|                                       |                                        | (Stomachs)       |
| Dolphinfish                           | Manooch <i>et al.</i> 1984             | 1 (2,919)        |
|                                       | Massuti <i>et al.</i> 1998             | 1 (229)          |
|                                       | Oxenford and Hunte 1999                | 1 (352)          |
|                                       | Rose and Hassler 1974                  | 1 (329)          |
|                                       | Rudershausen <i>et al.</i> 2010        | 1 (241)          |
|                                       | Satoh <i>et al.</i> 2004               | 1 (27)           |
| Frigate tunny                         | Gomez <i>et al.</i> 2004               | 1 (43)           |
| Horse eye jack                        | Austin and Austin 1971                 | 1 (2)            |
|                                       | Gomez <i>et al.</i> 2004               | 1 (5)            |
|                                       | Randall 1967                           | 1 (12)           |
| Keeled needlefish                     | Randall 1967                           | 1 (13)           |
| Little tunny                          | Bahou <i>et al.</i> 2007               | 1 (166)          |
|                                       | Bowman <i>et al.</i> 2000              | 1 (3)            |
|                                       | Gomez <i>et al.</i> 2004               | 1 (65)           |
|                                       | Manooch <i>et al.</i> 1985             | 1 (1.212)        |
|                                       | Randall 1967                           | 1 (15)           |
| Needlefish                            | Carr and Adams 1973                    | 5 (44)           |
| Pompano dolphinfish                   | Casazza 2008                           | 2 (22)           |
|                                       | Gibbs and Collette 1959                | 1 (46)           |
|                                       | Satoh et al 2004                       | 1 (2)            |
| Rainbow runner                        | Garcia and Posada 2014                 | 1 (35)           |
| Remora                                | Cressev and Lachner 1970               | 1 (147)          |
| Romora                                | Gomez et al 2004                       | 1 (3)            |
|                                       | Randall 1967                           | 1 (5)            |
| Rudderfish                            | Bowman et al 2000                      | 1 (2)            |
|                                       | Gomez et al 2004                       | 1 (1)            |
| Sharksucker                           | Divita et al. 1983                     | 1 (2)            |
| Changeden                             | Randall 1967                           | 1 (5)            |
| Timucu                                | Randall 1967                           | 1 (15)           |
| Waboo                                 | Franks et al. 2007                     | 1 (13)           |
| Wanoo                                 | Gomez et al. 2007                      | 1 (466)          |
|                                       |                                        | 1 (212)          |
|                                       | Manooch and Hogarth 1983               | 1 (56)           |
|                                       | Rudershausen et al 2010                | 1 (67)           |
|                                       | Satah at al 2004                       | 1 (07)           |
| Vollow jack                           | Comoz of al 2004                       | 1 (610)          |
| renow jack                            | Bondoll 1067                           | 1 (6)            |
| (10) Ambariaak                        | Kanuali 1907                           | 12 (842)         |
| (19) Allibeljack<br>Groater amberiaek | Andalara and Pinitana 1007             | 12 (042)         |
| Greater annuerjack                    | Radalamonti at al 1005                 | 2 (166)          |
|                                       | Bowman of al 2000                      | 3 (100)<br>1 (2) |
|                                       | Duminari el al. 2000<br>Humphrova 1020 | 1 (3)<br>1 (125) |
|                                       | Managah and Haimaviai 1002             | 1 (123)          |
|                                       | IVIANUUUTI ANU MAIMUVIUI 1983          | I ( <i>I</i> Z)  |

| Eunctional group/species     | Reference                           | Observations |
|------------------------------|-------------------------------------|--------------|
|                              | Reference                           | (Stomachs)   |
| Greater amberjack            | Matallanas <i>et al.</i> 1995       | 2 (285)      |
|                              | Patterson <i>et al.</i> 2012        | 2 (0)        |
|                              | Randall 1967                        | 1 (6)        |
| (20) Cobia                   |                                     | 14 (888)     |
| Cobia                        | Arendt <i>et al.</i> 2001           | 1 (78)       |
|                              | Bachok <i>et al.</i> 2004           | 1 (98)       |
|                              | Bowman <i>et al.</i> 2000           | 1 (3)        |
|                              | Franks <i>et al.</i> 1996           | 1 (39)       |
|                              | Gomez <i>et al.</i> 2004            | 1 (49)       |
|                              | Knapp 1949                          | 1 (NÁ)       |
|                              | Knapp 1951                          | 1 (22)       |
|                              | Meyers and Franks 1996              | 1 (287)      |
|                              | Randall 1967                        | 1 (1)        |
|                              | Reid 1954                           | 1 (NA)       |
|                              | Rohit and Bhat 2012                 | 1 (177)      |
|                              | Salini <i>et al.</i> 1994           | 1 (24)       |
|                              | Shaffer and Nakamura 1989           | 1 (NÁ)       |
|                              | Smith 1995                          | 1 (110)      |
| (21) King mackerel - juvenil | е                                   | 3 (188)      |
| King mackerel (0yr)          | Finucane <i>et al.</i> 1990         | 1 (61)       |
| 0                            | Naughton and Saloman 1981           | 1 (85)       |
|                              | Pelaez Rodriguez <i>et al.</i> 2005 | 1 (42)       |
| (22) King mackerel - adult   | 3                                   | 24 (14,328)  |
| King mackerel (1+yr)         | Beaumariage 1973                    | 1 (179)      |
| 5                            | Boschung 1957                       | 1 (8)        |
|                              | Bowman <i>et al.</i> 2000           | 1 (4)        |
|                              | Browder <i>et al.</i> 1990          | 6 (6,696)    |
|                              | DeVane 1978                         | 1 (113)      |
|                              | Gomez <i>et al.</i> 2004            | 1 (58)       |
|                              | Kemp 1950                           | 1 (92)       |
|                              | Knapp 1949                          | 1 (327)      |
|                              | McMichael                           | 1 (104)      |
|                              | Menezes 1969                        | 1 (633)      |
|                              | Miles 1949                          | 1 (119)      |
|                              | Randall 1967                        | 1 (13)       |
|                              | Saloman and Naughton 1983           | 7 (5,982)    |
| (23) Spanish mackerel - juv  | enile                               | 3 (289)      |
| Spanish mackerel (0yr)       | Finucane <i>et al.</i> 1990         | 1 (91)       |
|                              | Naughton and Saloman 1981           | 2 (198)      |
| (24) Spanish mackerel - adu  | ult                                 | 12 (9,225)   |
| Spanish mackerel (1+yr)      | Bowman <i>et al.</i> 2000           | 1 (12)       |
|                              | Browder <i>et al.</i> 1990          | 2 (1,027)    |
|                              | Kemp 1950                           | 1 (611)      |

| Functional group/species    | Reference                     | Observations |
|-----------------------------|-------------------------------|--------------|
| i uncional group/species    | Kelefence                     | (Stomachs)   |
| Spanish mackerel (1+ yr)    | Klima 1959                    | 1 (181)      |
|                             | Knapp 1950                    | 1 (458)      |
|                             | Saloman and Naughton 1983     | 5 (6,933)    |
|                             | Wrast 2008                    | 1 (3)        |
| (25) Skates/rays            |                               | 44 (1,636)   |
| Atlantic stingray           | Wrast 2008                    | 1 (1)        |
| Australian butterflyray     | Jacobsen <i>et al.</i> 2009   | 1 (62)       |
| Bluntnose stingray          | Bowman <i>et al.</i> 2000     | 1 (22)       |
|                             | Hess 1961                     | 1 (30)       |
| Bullnose ray                | Bowman <i>et al.</i> 2000     | 1 (13)       |
| -                           | Szczepanski 2013              | 1 (133)      |
|                             | Woodland et al. 2011          | 1 (34)       |
| Clearnose skate             | Bowman <i>et al.</i> 2000     | 7 (44)       |
|                             | Sagarese <i>et al.</i> 2011   | 1 (18)       |
|                             | Szczepanski 2013              | 1 (74)       |
| Cownose ray                 | Ajemian and Powers 2011       | 1 (154)      |
| -                           | Bowman <i>et al.</i> 2000     | 1 (3)        |
|                             | Collins <i>et al.</i> 2007    | 1 (37)       |
|                             | Gomez <i>et al.</i> 2004      | 1 (1)        |
|                             | Smith and Merriner 1985       | 1 (68)       |
| Eagle ray                   | Gomez <i>et al.</i> 2004      | 1 (4)        |
| 0                           | Randall 1967                  | 1 (3)        |
|                             | Schluessel <i>et al.</i> 2010 | 2 (105)      |
| Guitarfish                  | Ismen <i>et al.</i> 2006      | 1 (141)      |
|                             | Patokina and Litvinov 2005    | 2 (32)       |
| Longnose stingray           | Gomez <i>et al.</i> 2004      | 1 (16)       |
| Nurse shark                 | Castro 2000                   | 1 (41)       |
|                             | Gomez <i>et al.</i> 2004      | 1 (9)        |
|                             | Randall 1967                  | 1 (9)        |
| Roughtail stingray          | Bowman <i>et al.</i> 2000     | 1 (4)        |
|                             | Hess 1961                     | 1 (49)       |
|                             | Struhsaker 1969               | 1 (14)       |
| Roundel skate               | Divita <i>et al.</i> 1983     | 1 (6)        |
| Shortnose guitarfish        | Barbini <i>et al.</i> 2011    | 1 (279)      |
| Smooth butterflyray         | Yokota <i>et al.</i> 2013     | 1 (176)      |
| Southern stingray           | Bowman <i>et al.</i> 2000     | 1 (2)        |
|                             | Gilliam and Sullivan 1993     | 1 (18)       |
|                             | Gomez <i>et al.</i> 2004      | 1 (6)        |
|                             | Randall 1967                  | 1 (23)       |
| Spiny butterflyray          | Bowman <i>et al.</i> 2000     | 1 (4)        |
| Stingray                    | Divita <i>et al.</i> 1983     | 1 (1)        |
| (26) Gag grouper - juvenile |                               | 21 (2,250)   |
| Gag grouper (0-3yr)         | Adams 1976                    | 1 (26)       |

| Functional group/species  | Reference                            | Observations |
|---------------------------|--------------------------------------|--------------|
|                           | <b>B</b>                             | (Stomachs)   |
| Gag grouper (0-3yr)       | Brule <i>et al.</i> 2011             | 4 (322)      |
|                           | Bullock and Smith (from Peters 1991) | 1 (134)      |
|                           | Bullock and Smith 1991               | 1 (53)       |
|                           | Lindberg et al. 2002                 | 1 (99)       |
|                           | Mena Loria <i>et al.</i> 2007        | 2 (322)      |
|                           | Mullaney 1994                        | 1 (209)      |
|                           | Mullaney and Gale 1996               | 1 (209)      |
|                           | Naughton and Saloman 1985            | 2 (158)      |
|                           | Reid 1954                            | 1 (0)        |
|                           | Ross and Moser 1995                  | 1 (150)      |
|                           | Stallings <i>et al.</i> 2010         | 1 (329)      |
|                           | Weaver 1996                          | 4 (239)      |
| (27) Gag grouper - adult  |                                      | 9 (1,606)    |
| Gag grouper (+yr)         | Naughton and Saloman 1985            | 6 (821)      |
|                           | Patterson et al. 2012                | 2 (0)        |
|                           | Tremain and Adams 2012               | 1 (785)      |
| (28) Red grouper - juveni | e                                    | 13 (459)     |
| Red grouper (0-3yr)       | Brule <i>et al.</i> 1993             | 3 (128)      |
|                           | Brule and Canche 1993                | 4 (31)       |
|                           | Brule and Canche 1994                | 1 (152)      |
|                           | Bullock and Smith 1991               | 1 (23)       |
|                           | Randall 1967                         | 1 (2)        |
|                           | Weaver 1996                          | 3 (123)      |
| (29) Red grouper - adult  |                                      | 7 (415)      |
| Red grouper (3+yr)        | Gomez <i>et al.</i> 2004             | 1 (87)       |
|                           | Gudger 1929                          | 1 (3)        |
|                           | Longley and Hildebrand 1941          | 1 (0)        |
|                           | Moe 1969                             | 1 (0)        |
|                           | Patterson <i>et al.</i> 2012         | 1 (0)        |
|                           | Tremain and Adams 2012               | 1 (271)      |
|                           | Weaver 1996                          | 1 (54)       |
| (31) Yellowedge grouper   | - adult                              | 2 (3)        |
| Yellowedge grouper        | Rullock and Smith 1001               | 1 (0)        |
| (3+yr)                    | Builder and Smith 1991               | 1(0)         |
|                           | Nelson 1988                          | 1 (3)        |
| (32) Goliath grouper      |                                      | 9 (239)      |
| Goliath grouper           | Beebe and Tee Van 1928               | 1 (1)        |
|                           | Bullock and Smith 1991               | 2 (33)       |
|                           | Gomez <i>et al.</i> 2004             | 1 (1)        |
| Goliath grouper           | Koenig and Coleman 2009              | 2 (191)      |
|                           | Odum 1971                            | 1 (2)        |
|                           | Randall 1967                         | 1 (9)        |
|                           | Smith 1971                           | 1 (2)        |

| Functional group/species | Reference                               | Observations |
|--------------------------|-----------------------------------------|--------------|
| (00) D                   |                                         | (Stomachs)   |
| (33) Deep-water grouper  |                                         | 8 (64)       |
| Misty grouper            | Bullock and Smith 1991                  | 1 (1)        |
|                          | Thompson and Monroe 1978                | 1 (1)        |
| Snowy grouper            | Bielsa and Labinsky 1987                | 3 (30)       |
|                          | Manooch and Manooch 1993                | 1 (0)        |
| Speckled hind            | Bullock and Smith 1991                  | 1 (31)       |
| Warsaw grouper           | Bullock and Smith 1991                  | 1 (1)        |
| (34) Shallow-water group | er                                      | 39 (1,153)   |
| Black grouper            | Brule <i>et al.</i> 2005                | 7 (72)       |
|                          | Bullock and Smith (Peters unpub) 1991   | 1 (2)        |
|                          | Gomez et al. 2004                       | 1 (22)       |
|                          | Randall 1967                            | 1 (4)        |
| Gravsbv                  | Randall 1967                            | 1 (26)       |
| Nassau grouper           | Carter et al. 1994                      | 1 (50)       |
|                          | Eggleston <i>et al.</i> 1998            | 3 (58)       |
|                          | Grover 1993                             | 1 (120)      |
|                          | Grover et al 1998                       | 1 (38)       |
|                          | Randall 1965                            | 1 (150)      |
|                          | Randall 1967                            | 1 (153)      |
| Red hind                 | Bullock and Smith 1991                  | 1 (100)      |
|                          | Burnett Herkes 1075                     | 1 (56)       |
|                          | Compared at 2004                        | 1 (1)        |
|                          | Monzol 1060                             | 1 (1)        |
|                          | Rendell 1967                            | 1 (0)        |
|                          | Ranuali 1907<br>Thompson and Munro 1079 | 1 (0)        |
| De als bis d             | Pulle also and Munito 1978              | 1 (0)        |
| ROCK NIND                | Bullock and Smith 1991                  | 1 (0)        |
|                          | Gomez <i>et al.</i> 2004                | 1 (110)      |
|                          | Nelson 1988                             | 1 (0)        |
|                          | Randall 1967                            | 1 (31)       |
| Scamp                    | Bowman <i>et al.</i> 2000               | 1 (2)        |
|                          | Bullock and Smith 1991                  | 1 (2)        |
|                          | Matheson <i>et al.</i> 1986             | 1 (91)       |
|                          | Tremain and Adams 2012                  | 1 (11)       |
| Yellowfin grouper        | Bullock and Smith 1991                  | 1 (0)        |
|                          | Randall 1967                            | 1 (51)       |
| Yellowmouth grouper      | Bullock and Murphy 1994                 | 1 (25)       |
|                          | Bullock and Smith 1991                  | 1 (0)        |
|                          | Randall 1967                            | 1 (5)        |
| Yellowmouth              | Noloon 1099                             | 1 (22)       |
| grouper/scamp            | 11612011 1300                           | I (ZZ)       |

| Functional group/species  | Reference                     | Observations |
|---------------------------|-------------------------------|--------------|
|                           |                               | (Stomachs)   |
| (36) Red snapper - juveni | le                            | 40 (3,830)   |
| Red snapper (ages 1-2)    | Bailey 1995                   | 1 (37)       |
|                           | Beaumariage and Bullock 1976  | 1 (0)        |
|                           | Bradley and Bryan 1975        | 11 (87)      |
|                           | Camber 1955                   | 1 (14)       |
|                           | Divita <i>et al.</i> 1983     | 1 (48)       |
|                           | Gallaway <i>et al.</i> 1981   | 1 (0)        |
|                           | McCawley <i>et al.</i> 2003   | 1 (452)      |
|                           | McCawley <i>et al.</i> 2006   | 1 (138)      |
|                           | Moseley 1966                  | 2 (73)       |
|                           | Newton 2007                   | 3 (906)      |
|                           | Ouzts and Szedlmayer 2003     | 1 (164)      |
|                           | Patterson <i>et al.</i> 2012  | 4 (0)        |
|                           | Perez Diaz <i>et al.</i> 2007 | 1 (70)       |
|                           | Schqartzkopf 2014             | 4 (117)      |
|                           | Sheridan 2008                 | 1 (192)      |
|                           | Szedlmayer and Lee 2004       | 1 (789)      |
|                           | Wells <i>et al.</i> 2008      | 5 (743)      |
| (37) Red snapper - adult  |                               | 25 (1,765)   |
| Red snapper (ages 3+)     | Bailey 1995                   | 1 (8)        |
|                           | Bradley and Bryan 1975        | 1 (190)      |
|                           | Camber 1955                   | 1 (24)       |
|                           | Cowan <i>et al.</i> 2012      | 3 (309)      |
|                           | Futch and Bruger 1976         | 1 (56)       |
|                           | Gallaway 1981                 | 1 (NÁ)       |
|                           | Knapp 1949                    | 1 (46)       |
|                           | McCawley and Cowan 2007       | 1 (268)      |
|                           | McCawley et al. 2003          | 1 (268)      |
|                           | Patterson et al. 2012         | 2 (0)        |
|                           | Perez Diaz <i>et al.</i> 2007 | 2 (138)      |
|                           | Schqartzkopf 2014             | 7 (144)      |
|                           | Simonsen 2013                 | 3 (314)      |
| (38) Vermilion snapper    |                               | 13 (1,Ó17)   |
| Vermilion snapper         | Bowman <i>et al.</i> 2000     | 1 (9)        |
|                           | Darnell 1991                  | 1 (16)       |
|                           | Dixon 1975                    | 1 (15)       |
|                           | Gomez <i>et al.</i> 2004      | 1 (255)      |
|                           | Grimes 1979                   | 2 (179)      |
|                           | Johnson <i>et al.</i> 2010    | 1 (288)      |
|                           | Patterson <i>et al.</i> 2012  | 2 (0)        |
|                           | Sedberry and Cuellar 1993     | 4 (255)      |

| Functional group/species | Reference                        | Observations |
|--------------------------|----------------------------------|--------------|
|                          | Iveletetice                      | (Stomachs)   |
| (39) Mutton snapper      |                                  | 7 (419)      |
| Mutton snapper           | Clark <i>et al.</i> 2009         | 1 (3)        |
|                          | Duarte and Garcia 1999           | 1 (110)      |
|                          | Freitas <i>et al.</i> 2011       | 1 (85)       |
|                          | Gomez <i>et al.</i> 2004         | 1 (128)      |
|                          | Heck and Weinstein 1989          | 1 (NA)       |
|                          | Pimentel and Joyeux 2010         | 1 (40)       |
|                          | Randall 1967                     | 1 (53)       |
| (40) Other snapper       |                                  | 31 (1,859)   |
| Cubera snapper           | Randall 1967                     | 1 (11)       |
| Dog snapper              | Austin and Austin 1971           | 1 (2)        |
| 3                        | Clark <i>et al.</i> 2009         | 1 (5)        |
|                          | Gomez et al. 2004                | 1 (11)       |
|                          | Monteiro <i>et al.</i> 2009      | 1 (88)       |
|                          | Pimentel and Joveux 2010         | 1 (45)       |
|                          | Randall 1967                     | 1 (56)       |
| Grav snapper             | Austin and Austin 1971           | 1 (1)        |
|                          | Clamark <i>et al.</i> 2009       | 1 (8)        |
|                          | Franks and VanderKoov 2000       | 1 (12)       |
|                          | Gomez <i>et al.</i> 2004         | 1 (374)      |
|                          | Guevara et al. 2007              | 1 (672)      |
|                          | Hammerschlag <i>et al.</i> 2010  | 1 (58)       |
|                          | Harrigan <i>et al.</i> 1989      | 2 (152)      |
|                          | Lavman and Silliman 2002         | 1(13)        |
|                          | Moriniere <i>et al.</i> 2003     | 2 (22)       |
|                          | Nagelkerken <i>et al.</i> 2000   | 1 (14)       |
|                          | Odom and Heald 1972              | 1 (96)       |
|                          | Patterson et al 2012             | 2(0)         |
|                          | Randall 1967                     | 1 (28)       |
|                          | Samano Zapata <i>et al.</i> 1998 | 1 (162)      |
|                          | Yeager and Layman 2011           | 2(0)         |
| Mahogany snapper         | Gomez et al. 2004                | 1 (5)        |
|                          | Randall 1967                     | 1 (8)        |
| Queen snapper            | Gobert <i>et al.</i> 2003        | 1 (3)        |
| Silk snapper             | Gomez et al. 2004                | 1 (7)        |
| Wenchman                 | Gomez et al. 2004                | 1 (6)        |
| (41) Coastal piscivores  |                                  | 44 (4.882)   |
| Bonefish                 | Colton and Alevizon 1983         | 1 (365)      |
|                          | Crabtree et al. 1998             | 1 (385)      |
|                          | Gomez <i>et al.</i> 2004         | 1 (385)      |
|                          | Lavman and Silliman 2002         | 1 (10)       |
|                          | Snodgrass <i>et al.</i> 2008     | 1 (139)      |
|                          | Warmke and Erdman 1963           | 1 (272)      |

| Functional group/species | Reference                        | Observations |
|--------------------------|----------------------------------|--------------|
|                          | Kelefende                        | (Stomachs)   |
| Bonefish                 | Weinberger and Posada 2005       | 1 (136)      |
| Common snook             | Adams <i>et al.</i> 2009         | 4 (86)       |
|                          | Austin and Austin 1971           | 1 (8)        |
|                          | Blewett <i>et al.</i> 2006       | 1 (432)      |
|                          | Diener <i>et al.</i> 1974        | 1 (NA)       |
|                          | Fore and Schmidt 1973            | 2 (269)      |
|                          | Gomez <i>et al.</i> 2004         | 1 (23)       |
|                          | Harrington and Harrington 1961   | 1 (167)      |
|                          | Odum and Heald 1972              | 1 (NA)       |
|                          | Rock 2009                        | 4 (353)      |
|                          | Stevens et al. 2010              | 1 (238)      |
|                          | Teixeira 1997                    | 1 (379)      |
| Ladyfish                 | Austin and Austin 1971           | 1 (7)        |
|                          | Darnell 1958                     | 1 (5)        |
|                          | Gomez <i>et al.</i> 2004         | 1 (1)        |
|                          | Harrington and Harrington 1961   | 1 (33)       |
|                          | Knapp 1949                       | 1 (156)      |
|                          | Odum 1971                        | 1 (9)        |
|                          | Odum and Heald 1972              | 1 (9)        |
|                          | Sekavec 1974                     | 3 (229)      |
| Tarpon                   | Austin and Austin 1971           | 1 (7)        |
|                          | Gomez et al. 2004                | 1 (8)        |
|                          | Harrington and Harrington 1960   | 1 (442)      |
|                          | Jud <i>et al.</i> 2011           | 1 (71)       |
|                          | Knapp 1949                       | 1 (37)       |
|                          | Odum and Heald 1972              | 1 (NÁ)       |
|                          | Randall 1967                     | 1 (2)        |
|                          | Rickards 1964                    | 1 (213)      |
|                          | Vega Cendejas and Hernandez 2002 | 1 (6)        |
| (42) Seatrout            | с ,                              | 61 (7,483)   |
| Sand seatrout            | Darnell 1958                     | 3 (47)       |
|                          | Divita <i>et al.</i> 1983        | 1 (25)       |
|                          | Kasprzak and Guillory 1984       | 1 (431)      |
|                          | Minello et al. 1989              | 2 (21)       |
|                          | Moffett 1979                     | 1 (220)      |
|                          | Overstreet and Heard 1982        | 1 (74)       |
|                          | Peebles and Hopkins 1993         | 6 (607)      |
|                          | Reid <i>et al.</i> 1954          | 5 (273)      |
|                          | Sheridan 1979                    | 1 (122)      |
|                          | Sheridan and Trimm 1983          | 2 (130)      |
|                          | Wrast 2008                       | 1 (11)       |
| Silver seatrout          | Divita <i>et al.</i> 1983        | 4 (269)      |
| Spotted seatrout         | Carr and Adams 1973              | 1 (174)      |

| Functional group/species | Reference                           | Observations |
|--------------------------|-------------------------------------|--------------|
|                          |                                     | (Stomachs)   |
| Spotted seatrout         | Darnell 1958                        | 4 (48)       |
|                          | Day 1960                            | 1 (32)       |
|                          | Gunter 1945                         | 1 (93)       |
|                          | Hettler 1989                        | 1 (144)      |
|                          | Klima and Tabb 1959                 | 1 (26)       |
|                          | Knapp 1949                          | 1 (2,698)    |
|                          | Minello <i>et al.</i> 1989          | 2 (20)       |
|                          | Odum and Heald 1972                 | 1 (8)        |
|                          | Overstreet and Heard 1982           | 1 (340)      |
|                          | Peebles and Hopkins 1993            | 7 (668)      |
|                          | Rogillio 1975                       | 1 (108)      |
|                          | Russell 2002                        | 1 (175)      |
|                          | Rutherford et al. 1982              | 1 (238)      |
|                          | Seagle 1969                         | 4 (217)      |
|                          | Simonsen and Cowan 2013             | 2 (83)       |
|                          | Tabb 1961                           | 2 (170)      |
|                          | Wrast 2008                          | 1 (11)       |
| (43) Oceanic piscivores  |                                     | 45 (6,950)   |
| Cutlassfish              | Bakhoum 2007                        | 1 (297)      |
|                          | Bittar and Di Beneditto 2009        | 1 (350)      |
|                          | Bittar <i>et al.</i> 2012           | 1 (0)        |
|                          | Bowman <i>et al.</i> 2000           | 1 (11)       |
|                          | Chiou <i>et al.</i> 2006            | 1 (836)      |
|                          | Divita <i>et al.</i> 1983           | 1 (5)        |
|                          | Martins <i>et al.</i> 2005          | 4 (932)      |
|                          | Mericas 1981                        | 1 (0)        |
|                          | Pelaez Rodriguez <i>et al.</i> 2005 | 1 (149)      |
|                          | Pethiyagoda 2006                    | 1 (82)       |
|                          | Portsev 1980                        | 6 (1,576)    |
|                          | Sheridan and Trimm 1983             | 2 (23)       |
|                          | Yan <i>et al.</i> 2011              | 3 (738)      |
| Escolar                  | Choy <i>et al.</i> 2013             | 1 (4)        |
| Lancetfish               | Bowman <i>et al.</i> 2000           | 1 (2)        |
|                          | Choy <i>et al.</i> 2013             | 1 (120)      |
|                          | Kubota and Uyeno 1970               | 1 (34)       |
|                          | Moteki <i>et al.</i> 2001           | 1 (19)       |
|                          | Potier et al. 2007                  | 2 (278)      |
|                          | Satoh et al. 2004                   | 1 (168)      |
| <b>~</b> <i>u</i> · · ·  | Young <i>et al.</i> 2010            | 2 (114)      |
| Ottshore hake            | Bowman <i>et al.</i> 2000           | 1 (13)       |
|                          | Garrison and Link 2000              | 1 (NA)       |
|                          | Langton and Bowman 1980             | 3 (31)       |

| Functional group/species | Reference                           | Observations        |
|--------------------------|-------------------------------------|---------------------|
|                          |                                     | (Stomachs)          |
| Offshore hake            | Rohr and Gutherz 1977               | 1 (649)             |
| Oilfish                  | Vasilakopoulos <i>et al.</i> 2011   | 1 (30)              |
|                          | Viana <i>et al.</i> 2012            | 1 (135)             |
| Pomfret                  | Blaber and Bulman 1987              | 1 (122)             |
|                          | Vaske <i>et al.</i> 2008            | 1 (185)             |
| Snake mackerel           | Choy <i>et al.</i> 2013             | 1 (47)              |
| (44) Benthic piscivores  | -                                   | 77 (4,571)          |
| Angel shark              | Baremore et al. 2010                | 3 (179)             |
| -                        | Bowman <i>et al.</i> 2000           | 1 (52)              |
|                          | Sommerville <i>et al.</i> 2011      | 1 (259)             |
| Brazilian lizardfish     | Divita 1983                         | 1 (13)              |
|                          | Pelaez Rodriguez <i>et al.</i> 2005 | 1 (86)              |
| Diamond lizardfish       | Randall 1967                        | 1 (2)               |
| Gulf flounder            | Francis 2002                        | 6 (0)               |
|                          | Luczkovich <i>et al.</i> 2002       | 2 (31)              |
|                          | Peebles and Hopkins 1993            | 7 (285)             |
|                          | Reid 1954                           | 1 (27)              |
|                          | Topp and Hoff 1972                  | 1 (3)               |
| Inshore lizardfish       | Carr and Adams 1973                 | 1 (30)              |
|                          | Cruz Escalona et al. 2005           | 1 (246)             |
|                          | Divita 1983                         | 2 (296)             |
|                          | Gomez et al. 2004                   | $\frac{1}{1}$ (9)   |
|                          | Grabrowski 2002                     | 1 (27)              |
|                          | Jeffers 2002                        | 4 (742)             |
|                          | Kagiwara and Abilhoa 2000           | 1 (73)              |
|                          | Minello <i>et al.</i> 1989          | 2(8)                |
|                          | Pelaez Rodriguez <i>et al.</i> 2005 | $\frac{1}{1}$ (124) |
|                          | Randall 1967                        | 1 (3)               |
|                          | Reid 1954                           | 1 (11)              |
|                          | Sheridan 2008                       | 1 (376)             |
|                          | Springer and Woodburn 1960          | 1 (13)              |
| Lizardfish               | Darnell 1991                        | 2 (49)              |
| Mexican flounder         | Divita et al. 1983                  | 1 (8)               |
| Offshore lizardfish      | Bowman et al. 2000                  | 1 (6)               |
| Oscellated flounder      | Divita et al. 1983                  | 1 (1)               |
| Sand diver               | Gomez et al 2004                    | 1 (38)              |
|                          | Randall 1967                        | 1 (18)              |
| Shortiaw lizardfish      | Gomez et al 2004                    | 1 (9)               |
| Snake eel                | Randall 1967                        | 1 (3)               |
| Snakefish                | $Divita \rho t al 1983$             | · (¬)<br>1 (?)      |
| Southern flounder        | Darnell 1958                        | · (~)<br>1 (1/1)    |
|                          | Damen 1900<br>Day 1960              | 1 (14)              |
|                          | Divita et al. 1983                  | 1 (9)               |
|                          |                                     | 1 (0)               |

| Functional group/species  | Reference                   | Observations |
|---------------------------|-----------------------------|--------------|
| i unctional group/species | Kelefence                   | (Stomachs)   |
| Southern flounder         | Ellis 2007                  | 4 (268)      |
|                           | Fitzhugh <i>et al.</i> 1996 | 7 (816)      |
|                           | Gunter 1945                 | 1 (8)        |
|                           | Knapp 1949                  | 1 (24)       |
|                           | Minello <i>et al.</i> 1989  | 2 (19)       |
|                           | Overstreet and Heard 1982   | 1 (97)       |
|                           | Powell and Schwartz 1979    | 4 (234)      |
| Spotfin flounder          | Divita <i>et al.</i> 1983   | 1 (8)        |
| (45) Reef/rubble-associat | ed piscivores               | 35 (818)     |
| Chain moray               | Randall 1967                | 1 (8)        |
| Dusky                     | Gladfelter and Johnson 1983 | 1 (55)       |
| Dusky squirrelfish        | Randall 1967                | 1 (42)       |
| Great barracuda           | Austin and Austin 1971      | 1 (21)       |
|                           | DeTroch <i>et al.</i> 1998  | 1 (18)       |
|                           | Gomez <i>et al.</i> 2004    | 1 (39)       |
|                           | Hammerschlag et al. 2010    | 1 (39)       |
|                           | Kulbicki <i>et al.</i> 2005 | 1 (39)       |
|                           | Lugendo <i>et al.</i> 2006  | 3 (16)       |
|                           | Randall 1967                | 1 (58)       |
|                           | Schmidt 1989                | 1 (50)       |
| Green moray               | Gomez <i>et al.</i> 2004    | 1 (0)        |
| Guaguanche barracuda      | Divita <i>et al.</i> 1983   | 1 (2)        |
| C C                       | Gomez <i>et al.</i> 2004    | 1 (9)        |
| Longjaw squirrelfish      | Gladfelter and Johnson 1983 | 1 (62)       |
|                           | Randall 1967                | 1 (9)        |
| Longspine squirrelfish    | Gladfelter and Johnson 1983 | 1 (73)       |
|                           | Randall 1967                | 1 (42)       |
| Moray                     | Divita <i>et al.</i> 1983   | 1 (2)        |
| Purplemouth moray         | Randall 1967                | 1 (6)        |
|                           | Young and Winn 2003         | 1 (18)       |
| Reef                      | Gladfelter and Johnson 1983 | 1 (45)       |
| Reef squirrelfish         | Randall 1967                | 1 (19)       |
| Sailors choice            | Randall 1967                | 1 (21)       |
| Soapfish                  | Divita <i>et al.</i> 1983   | 1 (1)        |
|                           | Felder and Cheney 1979      | 1 (7)        |
|                           | Randall 1967                | 1 (12)       |
| Southern sennet           | Randall 1967                | 1 (7)        |
| Spotted moray             | Randall 1967                | 1 (6)        |
|                           | Young and Winn 2003         | 1 (43)       |
| Squirrelfish              | Gladfelter and Johnson 1983 | 1 (18)       |
|                           | Gomez <i>et al.</i> 2004    | 1 (11)       |
|                           | Randall 1967                | 1 (20)       |

| Functional group/species  | Reference                        | Observations |
|---------------------------|----------------------------------|--------------|
|                           |                                  | (Stomachs)   |
| (46) Reef/rubble-associat | ed invert feeders                | 157 (8,320)  |
| Atlantic seabream         | Gomez et al. 2004                | 1 (54)       |
|                           | Vega Dendejas <i>et al.</i> 1994 | 1 (257)      |
| Banded butterflyfish      | Pitt 1991                        | 1 (31)       |
|                           | Randall 1967                     | 1 (16)       |
| Bank sea bass             | Bullock and Smith 1991           | 1 (27)       |
|                           | Divita <i>et al.</i> 1983        | 1 (16)       |
|                           | Sheridan 2008                    | 1 (56)       |
| Barred hamlet             | Randall 1967                     | 1 (19)       |
| Belted sandfish           | Bullock and Smith 1991           | 1 (12)       |
| Bigeye                    | Bowman <i>et al.</i> 2000        | 1 (2)        |
|                           | Divita <i>et al.</i> 1983        | 1 (9)        |
|                           | Gomez <i>et al.</i> 2004         | 1 (21)       |
|                           | Randall 1967                     | 1 (18)       |
| Black grunt               | Gomez <i>et al.</i> 2004         | 1 (204)      |
| Black margate             | Gomez <i>et al.</i> 2004         | 1 (0)        |
| 5                         | Randall 1967                     | 1 (40)       |
| Black sea bass            | Bowman <i>et al.</i> 2000        | 9 (485)      |
|                           | Sedberry 1988                    | 1 (313)      |
| Blackear bass             | Divita <i>et al.</i> 1983        | 1 (11)       |
| Blackear wrasse           | Randall 1967                     | 1 (31)       |
| Bluehead wrasse           | Clifton and Motta 1998           | 1 (10)       |
|                           | Randall 1967                     | 1 (52)       |
| Bluestriped arunt         | Lavman and Silliman 2002         | 1 (47)       |
|                           | Randall 1967                     | 1 (34)       |
| Caesar grunt              | Gomez <i>et al.</i> 2004         | 1 (21)       |
| -                         | Randall 1967                     | 1 (21)       |
| Chalk bass                | Randall 1967                     | 1 (2)        |
| Clown wrasse              | Clifton and Motta 1998           | 1 (15)       |
|                           | Randall 1967                     | 1 (23)       |
| Cottonwick grunt          | Gomez <i>et al.</i> 2004         | 1 (19)       |
| Creole wrasse             | Randall 1967                     | 1 (15)       |
| Creolefish                | Bullock and Smith 1991           | 1 (2)        |
|                           | Nelson 1988                      | 1 (252)      |
| Cubbyu                    | Divita <i>et al.</i> 1983        | 1 (8)        |
| Dusky hamlet              | Randall 1967                     | 1 (17)       |
| Foureve butterflyfish     | Pitts 1991                       | 1 (33)       |
| , ,                       | Randall 1967                     | 1 (28)       |
| Foureve butterlyfish      | Birkeland and Neudecker 1981     | 1 (10)       |
| French grunt              | Gomez et al. 2004                | 1 (30)       |
|                           | Lavman and Silliman 2002         | 1 (3)        |
|                           | Randall 1967                     | 1 (30)       |
| Glasseye                  | Randall 1967                     | 1 (25)       |

| Functional group/species | Reference                         | Observations |
|--------------------------|-----------------------------------|--------------|
|                          | Kelefence                         | (Stomachs)   |
| Harlequin bass           | Randall 1967                      | 1 (19)       |
| Hawkfish                 | Randall 1967                      | 1 (12)       |
| Hogfish                  | Bowman <i>et al.</i> 2000         | 1 (1)        |
|                          | Clifton and Motta 1998            | 1 (15)       |
|                          | Gomez etal 2004                   | 1 (0)        |
|                          | Randall 1967                      | 1 (80)       |
|                          | Wainwright 1987                   | 1 (67)       |
| Jackknife fish           | Gomez <i>et al.</i> 2004          | 1 (1)        |
|                          | Randall 1967                      | 1 (4)        |
| Jolthead porgy           | Randall 1967                      | 1 (9)        |
| Knobbed porgy            | Divita <i>et al.</i> 1983         | 1 (2)        |
|                          | Horvath <i>et al.</i> 1990        | 1 (70)       |
| Lane snapper             | Divita <i>et al.</i> 1983         | 1 (22)       |
|                          | Doncel and Paramo 2010            | 1 (148)      |
|                          | Franks and VanderKooy 2000        | 1 (53)       |
|                          | Gomez et al. 2004                 | 1 (162)      |
|                          | Patterson <i>et al.</i> 2012      | 1 (0)        |
|                          | Pimentel and Joyeux 2010          | 1 (81)       |
|                          | Randall 1967                      | 1 (2)        |
|                          | Reid 1954                         | 1 (9)        |
|                          | Rivera Arriaga <i>et al.</i> 1995 | 1 (444)      |
|                          | Rodriguez Pino 1962               | 1 (0)        |
|                          | Samano Zapata <i>et al.</i> 1998  | 1 (70)       |
| Longsnout butterflyfish  | Birkeland and Neudecker 1981      | 1 (12)       |
| 5                        | Randall 1967                      | 1 (7)        |
| Lonaspine scorpionfish   | Darnell 1991                      | 3 (192)      |
| Margate                  | Cummings et al. 1961              | 1 (55)       |
| - <u>-</u>               | Randall 1967                      | 1 (39)       |
| Mushroom scorpionfish    | Randall 1967                      | 1 (16)       |
| Mutton hamlet            | Randall 1967                      | 1 (30)       |
| Pearly razor             | Castriota <i>et al.</i> 2005      | 1 (177)      |
| ,                        | Randall 1967                      | 1 (8)        |
| Pluma porgy              | Gomez et al. 2004                 | 1 (6)        |
| 5 5 5                    | Randall 1967                      | 1 (10)       |
| Porkfish                 | Gomez e tal 2004                  | 1 (1)        |
|                          | Randall 1967                      | 1 (13)       |
| Puddinawife              | Randall 1967                      | 1 (27)       |
| Pygmy sea bass           | Bullock and Smith 1991            | 1 (2)        |
| Reef butterflyfish       | Randall 1967                      | 1 (3)        |
| Reef croaker             | Divita <i>et al.</i> 1983         | 1 (5)        |
|                          | Randall 1967                      | 1 (25)       |
| Reef scorpionfish        | Randall 1967                      | 1 (11)       |
| Rock sea bass            | Divita <i>et al.</i> 1983         | 2 (256)      |

| Functional group/species | Reference                          | Observations |
|--------------------------|------------------------------------|--------------|
|                          |                                    | (Stomachs)   |
| Rock sea bass            | Ross <i>et al.</i> 1989            | 1 (865)      |
|                          | Sheridan 2008                      | 1 (386)      |
| Sailors choice           | Gomez <i>et al.</i> 2004           | 1 (4)        |
|                          | Layman and Silliman 2002           | 1 (15)       |
| Sand sea bass            | Gomez <i>et al.</i> 2004           | 1 (0)        |
| Saucereye porgy          | Randall 1967                       | 1 (12)       |
| Schoolmaster             | Austin and Austin 1971             | 1 (24)       |
|                          | Hammerschlag Peyer and Layman 2012 | 2 (261)      |
|                          | Layman and Silliman 2002           | 1 (51)       |
|                          | Moriniere et al. 2003              | 2 (79)       |
|                          | Nagelkerken <i>et al.</i> 2000     | 3 (53)       |
|                          | Randall 1967                       | 1 (58)       |
| Sheepshead porgy         | Castillo Rivera <i>et al.</i> 2007 | 1 (52)       |
|                          | Divita <i>et al.</i> 1983          | 1 (1)        |
|                          | Gomez <i>et al.</i> 2004           | 1 (0)        |
|                          | Odum 1971                          | 1 (114)      |
|                          | Odum and Heald 1972                | 1 (114)      |
|                          | Overstreet and Heard 1982          | 2 (125)      |
|                          | Randall 1967                       | 1 (1)        |
|                          | Wrast 2008                         | 1 (7)        |
| Slippery dick            | Clifton and Motta 1998             | 1 (15)       |
|                          | Randall 1967                       | 1 (46)       |
| Smallmouth grunt         | Gomez <i>et al.</i> 2004           | 1 (213)      |
|                          | Randall 1967                       | 1 (17)       |
| Spanish grunt            | Randall 1967                       | 1 (19)       |
| Spanish hogfish          | Randall 1967                       | 1 (30)       |
| Spotfin butterflyfish    | Gomez <i>et al.</i> 2004           | 1 (31)       |
|                          | Pitts 1991                         | 1 (31)       |
| Spotted scorpionfish     | Gomez etal 2004                    | 1 (0)        |
|                          | Randall 1967                       | 1 (16)       |
| Tobaccofish              | Randall 1967                       | 1 (1)        |
|                          | Robins and Starck 1961             | 1 (3)        |
| Tomtate                  | Bowman <i>et al.</i> 2000          | 1 (14)       |
|                          | Darnell 1991                       | 1 (16)       |
|                          | Gomez et al. 2004                  | 1 (32)       |
|                          | Randall 1967                       | 1 (16)       |
| White grunt              | Bowman <i>et al.</i> 2000          | 1 (11)       |
|                          | Gomez <i>et al.</i> 2004           | 1 (5)        |
|                          | Randall 1967                       | 1 (15)       |
| whitebone porgy          | Bowman <i>et al.</i> 2000          | 1 (2)        |
|                          | Sedberry 1989                      | 5 (318)      |
| Yellowbelly hamlet       | Randall 1967                       | 1 (16)       |

| Functional group/species  | Reference                            | Observations |
|---------------------------|--------------------------------------|--------------|
|                           | Oliffican and Matter 4000            |              |
| reliownead wrasse         | Clifton and Motta 1998               | 1 (15)       |
|                           | Randall 1967                         | 1 (10)       |
| Yellowtall namlet         | Randall 1967                         | 1 (60)       |
| Yellowtall snapper        | Gomez et al. 2004                    | 1 (0)        |
|                           | Moriniere et al. 2003                | 2 (76)       |
|                           | Nagelkerken <i>et al.</i> 2000       | 2 (38)       |
|                           | Randall 1967                         | 1 (42)       |
|                           | Rincon Sandoval <i>et al.</i> 2009   | 1 (505)      |
| (47) Demersal coastal inv | ertfeeders                           | 240 (23,132) |
| African pompano           | Gomez <i>et al.</i> 2004             | 1 (2)        |
| Atlantic bumper           | Bowman <i>et al.</i> 2000            | 1 (4)        |
|                           | Divita <i>et al.</i> 1983            | 1 (7)        |
|                           | Gomez <i>et al.</i> 2004             | 1 (56)       |
| Atlantic croaker          | Bowman <i>et al.</i> 2000            | 7 (306)      |
|                           | Darnell 1961                         | 1 (0)        |
|                           | Darnell 1991                         | 2 (70)       |
|                           | Divita <i>et al.</i> 1983            | 2 (1,853)    |
|                           | Hansen <i>et al.</i> 1969            | 2 (2,470)    |
|                           | Minello <i>et al.</i> 1989           | 2 (147)      |
|                           | Overstreet and Heard 1978            | 1 (225)      |
|                           | Reid <i>et al.</i> 1954              | 1 (73)       |
|                           | Sheridan 1979                        | 1 (2,217)    |
|                           | Sheridan 1983                        | 2 (152)      |
|                           | Weaver and Holloway 1974             | 1 (0)        |
| Banded drum               | Bowman <i>et al.</i> 2000            | 1 (8)        |
|                           | Divita <i>et al.</i> 1983            | 1 (45)       |
| Barred grunt              | Gomez <i>et al.</i> 2004             | 1 (125)      |
| Black drum                | Overstreet and Heard 1982            | 1 (15)       |
|                           | Peters and McMichael 1990            | 9 (288)      |
|                           | Simmons and Breuer 1962              | 1 (189)      |
|                           | Wrast 2008                           | 1 (6)        |
| Caitipa moiarra           | Aguirre Leion and Diaz Ruiz 2006     | 1 (188)      |
| Corocoro grunt            | Gomez etal 2004                      | 1 (250)      |
| Dwarf goatfish            | Gomez et al. 2004                    | 1 (3)        |
| Florida pompano           | Gomez et al 2004                     | 1 (1)        |
| Gafftonsail catfish       | Gomez et al 2004                     | 1 (4)        |
| Cantopour cation          | Knann 1949                           | 1 (225)      |
|                           | Kobelkowsky and Castillo Rivera 1995 | 1 (0)        |
|                           | Mendoz Carranza 2003                 | 1 (430)      |
|                           | Ruderhausen and Locascio 2001        | 3 (320)      |
|                           | Wrast 2008                           | 1 (79)       |
|                           | Vanez Arancihia and Lara Dominguez   | 1 (10)       |
|                           | 1988                                 | 1 (37)       |

| Functional group/species | Reference                             | Observations |
|--------------------------|---------------------------------------|--------------|
|                          |                                       | (Stomachs)   |
|                          | Divita et al. 1983                    | 1 (9)        |
| Hardnead catfish         |                                       | 2 (29)       |
|                          | Knapp 1949                            | 1 (468)      |
|                          | Kobelkowsky and Castillo Rivera 1995  | 1 (0)        |
|                          | Motta <i>et al.</i> 1995              | 1 (30)       |
|                          | Odum and Heald 1972                   | 1 (62)       |
|                          | Sheridan 1983                         | 2 (45)       |
|                          | Vega Dendejas <i>et al.</i> 1994      | 1 (256)      |
|                          | Wrast 2008                            | 1 (72)       |
|                          | Yanez Arancibia and Lara Dominguez    | 2 (90)       |
|                          | 1988                                  | 2 (00)       |
| Irish mojarra            | Gomez <i>et al.</i> 2004              | 1 (1)        |
| Jamaican weakfish        | Gomez <i>et al.</i> 2004              | 1 (1)        |
| Jenny mojarra            | Gomez et al. 2004                     | 1 (132)      |
| Leatherjacket            | Carr and Adams 1973                   | 6 (80)       |
|                          | Gomez <i>et al.</i> 2004              | 1 (282)      |
|                          | Randall 1967                          | 1 (7)        |
| Longspine porgy          | Bowman <i>et al.</i> 2000             | 3 (39)       |
|                          | Divita <i>et al.</i> 1983             | 1 (23)       |
|                          | Sheridan 1983                         | 2 (88)       |
| Lookdown                 | Gomez <i>et al.</i> 2004              | 1 (51)       |
| Midshipman               | Divita <i>et al.</i> 1983             | 1 (8)        |
| Palometa                 | Randall 1967                          | 1 (23)       |
| Palometa pompano         | Gomez <i>et al.</i> 2004              | 1 (23)       |
| Permit                   | Carr and Adams 1973                   | 9 (134)      |
|                          | Gomez <i>et al.</i> 2004              | 1 (2)        |
|                          | Randall 1967                          | 1 (7)        |
| Piqfish                  | Adams 1976                            | 2 (105)      |
| 5                        | Bowman <i>et al.</i> 2000             | 1 (10)       |
|                          | Carr and Adams 1973                   | 10 (445)     |
|                          | Divita <i>et al.</i> 1983             | 1 (10)       |
|                          | Schmidt 1993                          | 1 (125)      |
|                          | Vega Dendejas <i>et al.</i> 1994      | 1 (578)      |
| Pompano                  | ArmitageAlvevizon 1980                | 2 (105)      |
|                          | Wheeler <i>et al.</i> 2002            | 5 (78)       |
| Red porav                | Gomez <i>et al.</i> 2004              | 1 (408)      |
|                          | Labropoulou et al. 1999               | 3 (408)      |
|                          | Papaconstantinous and Caragitsou 1989 | 1 (122)      |
| Sand drum                | Gomez <i>et al.</i> 2004              | 1 (100)      |
| Sandflat mojarra         | Austin and Austin 1971                | 1 (24)       |
|                          | Randall 1967                          | 1 (19)       |
| Silver iennv             | Carr and Adams 1973                   | 8 (306)      |
|                          | Motta et al. 1995                     | 1 (30)       |

| Functional group/species | Reference                         | Observations       |
|--------------------------|-----------------------------------|--------------------|
|                          | Reference                         | (Stomachs)         |
| Silver jenny             | Odum and Heald 1972               | 1 (112)            |
|                          | Peebles and Hopkins 1993          | 7 (429)            |
|                          | Vega Dendejas et al. 1994         | 1 (107)            |
| Silver perch             | Adams 1976                        | 1 (77)             |
|                          | Bowman <i>et al.</i> 2000         | 1 (1)              |
|                          | Carr and Adams 1973               | 19 (797)           |
|                          | Chavance et al. 1984              | 1 (34)             |
|                          | Divita <i>et al.</i> 1983         | 1 (1)              |
|                          | Minello <i>et al.</i> 1989        | 2 (52)             |
|                          | Peebles and Hopkins 1993 1993     | 9 (604)            |
|                          | Schmidt 1993                      | 1 (51)             |
|                          | Vega Dendejas <i>et al.</i> 1994  | 1 (168)            |
|                          | Waggy <i>et al.</i> 2007          | 1 (NA)             |
|                          | Wrast 2008                        | 1 (8)              |
| Slender mojarra          | Layman and Sills 2002             | 1 (70)             |
| Southern kincroaker      | Gomez <i>et al.</i> 2004          | 1 (4)              |
|                          | Knapp 1949                        | 1 (259)            |
| Southern kingcroaker     | Divita <i>et al.</i> 1983         | 2 (80)             |
| Spot croaker             | Adams 1976                        | 1 (112)            |
|                          | Alexander 1983                    | 1 (75)             |
|                          | Bowman <i>et al.</i> 2000         | 5 (373)            |
|                          | Divita <i>et al.</i> 1983         | 1 (239)            |
|                          | Hodson <i>et al.</i> 1981         | 1 (1,026)          |
|                          | Kobylinksi and Sheridan 1979 1979 | 1 (903)            |
|                          | Minello <i>et al.</i> 1989        | 2 (299)            |
|                          | Peebles and Hopkins 1993          | 6 (280)            |
|                          | Sheridan 1979                     | 1 (903)            |
|                          | Sheridan 1983                     | 2 (58)             |
|                          | Weaver and Holloway 1974          | 1 (0)              |
|                          | Wrast 2008                        | 1 (23)             |
| Spotfin mojarra          | Gomez et al. 2004                 | 1 (129)            |
|                          | Odum and Heald 1972               | 1 (95)             |
|                          | Vega Dendejas <i>et al.</i> 1994  | 1 (113)            |
| Spotted goatfish         | Gomez et al. 2004                 | 1 (16)             |
|                          | Randall 1967                      | 1 (26)             |
| Star drum                | Divita et al. 1983                | 1 (20)             |
| Striped mojarra          | Aguirre Leion and Diaz Ruiz 2006  | 1 (280)            |
|                          | Austin and Austin 1971            | 1 (7)              |
|                          | Gomez et al. 2004                 | 1 (53)             |
|                          | Dourn and Heald 1972              | 1 (14)             |
| ndewater mojarra         | Ley et al. 1994                   | T (TØT)<br>T (200) |
|                          | Peeples and Hopkins 1993          | 7 (299)            |

| Functional group/species   | Poforonco                     | Observations |
|----------------------------|-------------------------------|--------------|
| Functional group/species   | Reference                     | (Stomachs)   |
| Whitemouth croaker         | Austin and Austin 1971        | 1 (3)        |
|                            | Gomez <i>et al.</i> 2004      | 1 (55)       |
| Yellow goatfish            | Gomez <i>et al.</i> 2004      | 1 (4)        |
|                            | Randall 1967                  | 1 (14)       |
| Yellowfin mojarra          | Austin and Austin 1971        | 1 (25)       |
|                            | Gomez <i>et al.</i> 2004      | 1 (1)        |
|                            | Layman and Sills 2002         | 1 (5)        |
|                            | Randall 1967                  | 1 (27)       |
| (48) Red drum              |                               | 23 (3,419)   |
| Red drum                   | BassAvault 1975               | 18 (541)     |
|                            | Boothby and Avault 1971       | 1 (286)      |
|                            | Knapp 1949                    | 1 (754)      |
|                            | Overstreet and Heard 1978     | 1 (43)       |
|                            | Scharf and Schlicht 2000      | 1 (598)      |
|                            | Simmons and Breuer 1962       | 1 (1.197)    |
| (49) Benthic coastal inver | rt feeders                    | 89 (6.596)   |
| Band cusk eel              | Divita 1983                   | 1 (5)        |
| Bandtail goby              | Kramer <i>et al.</i> 2009     | 1 (18)       |
| Bandtail searobin          | Ross 1977                     | 1 (27)       |
| Barbfish                   | Randall 1967                  | 1 (7)        |
| Barred searobin            | Ross 1977                     | 1 (28)       |
| Batfish                    | Randall 1967                  | 1 (9)        |
| Bay whiff                  | Castillo Rivera et al. 2000   | 1 (146)      |
|                            | Divita 1983                   | 1 (10)       |
|                            | Guedes and Araujo 2008        | 1 (205)      |
|                            | Toepfer and Fleeger 1995      | 1(0)         |
| Bighead searobin           | Divita 1983                   | 1 (9)        |
| 2.9.1022 002.0011          | Ross 1977                     | 1 (69)       |
|                            | Sheridan 2008                 | 1 (154)      |
| Blackedge cusk eel         | Divita et al. 1983            | 2 (147)      |
| Blackwing searobin         | Divita et al. 1983            | 1 (9)        |
| Diaciting coal com         | Sheridan 2008                 | 1 (474)      |
| Bluespotted searobin       | Bowman <i>et al.</i> 2000     | 1 (1)        |
|                            | Divita 1983                   | 1 (7)        |
|                            | Ross 1977                     | 1 (141)      |
| Bridled goby               | Randall 1967                  | 1 (4)        |
| Brotula                    | Divita 1983                   | 1 (5)        |
| Cleaning goby              | Randall 1967                  | 1 (1)        |
| Conger eel                 | Bowman 2000                   | 1 (7)        |
|                            | Divita et al. 1983            | 1 (1)        |
|                            | Morato et al 1999             | 1 (95)       |
| Crested cusk eel           | Divita 1983                   | 1 (11)       |
| Crested goby               | Bouchereau <i>et al.</i> 2012 | 1 (200)      |
| Functional group/species | Reference                 | Observations |
|--------------------------|---------------------------|--------------|
|                          | Reference                 | (Stomachs)   |
| Crested goby             | Darcy 1981                | 1 (90)       |
| Cusk eel                 | Bowman <i>et al.</i> 2000 | 1 (2)        |
|                          | Gomez <i>et al.</i> 2004  | 1 (1)        |
| Dusky flounder           | Bowman <i>et al.</i> 2000 | 1 (1)        |
|                          | Divita 1983               | 1 (1)        |
|                          | Topp and Hoff 1972        | 4 (168)      |
| Dwarf sand perch         | Darnell 1991              | 3 (166)      |
| Fawn cusk eel            | Bowman <i>et al.</i> 2000 | 4 (109)      |
| Flounder                 | Grabrowski 2002           | 1 (75)       |
| Frillfin goby            | Emmanuel and Ajibola 2010 | 1 (300)      |
| Fringed flounder         | Guedes and Araujo 2008    | 1 (940)      |
| -                        | Reichert 2003             | 1 (82)       |
| Goby                     | Toepfer and Fleeger 1995  | 1 (0)        |
| Goldspot goby            | Randall 1967              | 1 (10)       |
| Gulf hake                | Divita 1983               | 1 (5)        |
| Leopard searobin         | Darnell 1991              | 2 (51)       |
|                          | Divita 1983               | 1 (2)        |
|                          | Ross 1977                 | 2 (544)      |
| Pallid goby              | Kramer <i>et al.</i> 2009 | 1 (36)       |
| Pancake batfish          | Darnell 1991              | 3 (354)      |
| Sand perch               | Bortone 1971              | 1 (127)      |
| -                        | Bowman <i>et al.</i> 2000 | 1 (2)        |
|                          | Bullock and Smith 1991    | 1 (17)       |
|                          | Divita <i>et al.</i> 1983 | 1 (27)       |
|                          | Gilbran 2007              | 1 (16)       |
|                          | Sheridan 2008             | 1 (258)      |
| Searobin                 | Divita <i>et al.</i> 1983 | 1 (9)        |
|                          | Gomez <i>et al.</i> 2004  | 1 (1)        |
| Shortnose batfish        | Darnell 1991              | 1 (15)       |
| Shortwing searobin       | Darnell 1991              | 1 (51)       |
| Smoothhead scorpionfish  | Darnell 1991              | 2 (48)       |
|                          | Divita <i>et al.</i> 1983 | 1 (5)        |
| Southern hake            | Divita <i>et al.</i> 1983 | 2 (94)       |
| Spotted hake             | Bowman <i>et al.</i> 2000 | 5 (41)       |
|                          | Steimle et al. 2000       | 1 (196)      |
| Threadfin                | Divita 1983               | 1 (29)       |
|                          | Rivera Arriagag UNK       | 2 (354)      |
| Tonguefish               | Austin and Austin 1971    | 1 (1)        |
|                          | Peebles and Hopkins 1993  | 1 (36)       |
|                          | Stickney 1976             | 2 (542)      |
|                          | Toepfer and Fleeger 1995  | 1 (0)        |

| Functional group/species | Reference                           | Observations |
|--------------------------|-------------------------------------|--------------|
|                          |                                     | (Stomachs)   |
| (50) Tilefish            |                                     | 9 (658)      |
| Blueline tilefish        | Bielsa and Labisky 1987             | 4 (92)       |
|                          | Gomez <i>et al.</i> 2004            | 1 (311)      |
|                          | Ross 1982                           | 1 (92)       |
| Golden tilefish          | Bowman <i>et al.</i> 2000           | 1 (6)        |
|                          | Freeman and Turner 1977             | 1 (150)      |
| Sand tilefish            | Randall 1967                        | 1 (7)        |
| (51) Gray triggerfish    |                                     | 14 (391)     |
| Gray triggerfish         | Aggrey Fynn 2007                    | 4 (65)       |
|                          | Casazza 2008                        | 2 (33)       |
|                          | Durie and Turingan 2001             | 2 (53)       |
|                          | Felder and Chaney 1979              | 1 (1)        |
|                          | Gomez et al. 2004                   | 1 (197)      |
|                          | Patterson et al. 2012               | 2 (0)        |
|                          | Vose and Nelson 1994                | 2 (42)       |
| (52) Coastal omnivores   |                                     | 91 (7,289)   |
| Ocean triggerfish        | Randall 1967                        | 1 (4)        |
| Atlantic spadefish       | Gomez 2004                          | 1 (1)        |
|                          | Hayse 1989                          | 3 (155)      |
|                          | Randall 1967                        | 1 (22)       |
| Bandtail puffer          | Randall 1967                        | 1 (29)       |
|                          | Targett 1978                        | 1 (453)      |
| Checkered puffer         | Austin and Austin 1971              | 1 (2)        |
| -                        | Chi Espinola and Vega Cendejas 2013 | 1 (382)      |
|                          | Dubiaski silva and Masunari 2008    | 1 (14)       |
|                          | Santos and Rodriquez 2012           | 1 (51)       |
|                          | Targett 1978                        | 1 (339)      |
|                          | Turingan 1994                       | 1 (10)       |
| Fringed filefish         | Casazza 2008                        | 1 (32)       |
|                          | Clements and Livingston 1983        | 6 (0)        |
|                          | Randall 1967                        | 1 (13)       |
| Orange filefish          | Gomez et al. 2004                   | 1 (5)        |
|                          | Randall 1967                        | 2 (31)       |
| Pinfish                  | Alexander 1983                      | 1 (102)      |
|                          | Bowman <i>et al.</i> 2000           | 1 (5)        |
|                          | Brook 1977                          | 1 (38)       |
|                          | Canto Maza and Vega Cendejas 2008   | 1 (90)       |
|                          | Darnell 1958                        | 5 (99)       |
|                          | Divita 1983                         | 1 (4)        |
|                          | Grabowski 2002                      | 2 (135)      |
|                          | Gunter 1945                         | 1 (8)        |
|                          | Hansen 1969                         | 2 (3,627)    |
|                          | Luczkovich <i>et al.</i> 2002       | 1 (45)       |

| Functional group/species | Reference                        | Observations<br>(Stomachs) |
|--------------------------|----------------------------------|----------------------------|
| Pinfish                  | Minello <i>et al.</i> 1989       | 2 (196)                    |
|                          | Motta <i>et al.</i> 1995         | 1 (30)                     |
|                          | Prado and Heck 2011              | 1 (13)                     |
|                          | Russell 2005                     | 1 (137)                    |
|                          | Schmidt 1993                     | 1 (197)                    |
|                          | Stoner and Livingston 1984       | 14 (0)                     |
|                          | Vega Cendejas <i>et al.</i> 1994 | 1 (375)                    |
|                          | Winemiller <i>et al.</i> 2007    | 1 (0)                      |
| Planehead filefish       | Adams 1976                       | 1 (87)                     |
|                          | Bowman <i>et al.</i> 2000        | 1 (4)                      |
|                          | Casazza 2008                     | 2 (115)                    |
|                          | Clements and Livingston 1983     | 6 (0)                      |
|                          | Dubiaski silva and Masunari 2008 | 1 (32)                     |
|                          | Prado and Heck 2011              | 1 (23)                     |
| Scrawled filefish        | Randall 1967                     | 1 (8)                      |
| Sharpnose puffer         | Randall 1967                     | 1 (26)                     |
| Smooth puffer            | Denadai <i>et al.</i> 2011       | 1 (123)                    |
| Southern puffer          | Carr and Adams 1973              | 4 (35)                     |
| Spadefish                | Divita <i>et al.</i> 1983        | 1 (2)                      |
| Spottail pinfish         | Bowman <i>et al.</i> 2000        | 1 (5)                      |
|                          | Carr and Adams 1972              | 1 (18)                     |
|                          | Pike and Lindquist 1994          | 1 (96)                     |
| Unicorn filefish         | Gomez et al. 2004                | 1 (29)                     |
|                          | Lopez <i>et al.</i> 2002         | 1 (16)                     |
| Whitespotted filefish    | Randall 1967                     | 1 (10)                     |
|                          | Turingan 1994                    | 1 (10)                     |
| Yellow chub              | Randall 1967                     | 1 (6)                      |
| (53) Reef omnivores      |                                  | 58 (1,174)                 |
| Beaugregory              | Nagelkerken <i>et al.</i> 2006   | 1 (8)                      |
|                          | Randall 1967                     | 1 (41)                     |
| Bermuda chub             | Randall 1967                     | 1 (19)                     |
| Blue angelfish           | Feddern 1968                     | 1 (71)                     |
|                          | Patterson 2012                   | 1 (0)                      |
|                          | Weaver and Sulak 2000            | 1 (NA)                     |
| Blue tang                | Ferreira <i>et al.</i> 2006      | 1 (20)                     |
|                          | Randall 1967                     | 1 (25)                     |
| Bucktooth parrotfish     | Randall 1967                     | 1 (5)                      |
| Cherubtish               | Randall 1967                     | 1 (4)                      |
| Chub                     | Ferreira et al. 2006             | 1 (20)                     |
|                          | Silvano and Guth 2006            | 1 (20)                     |
| Cocoa damselfish         | Feitosa <i>et al.</i> 2012       | 2 (60)                     |
|                          | Randall 1967                     | 1 (7)                      |

| Functional group/species        | Reference                      | Observations |
|---------------------------------|--------------------------------|--------------|
| Destarfish                      | Formaina at al. 2006           |              |
| Docionisti                      | Negelkerken et al. 2006        | 1 (20)       |
|                                 | Rageikeikeit et al. 2000       | 1 (11)       |
| Duala dama alfiah               |                                | 1 (20)       |
| Dusky damsellish                |                                | 2 (36)       |
|                                 | Feltosa <i>et al.</i> 2012     | 2 (60)       |
| <b>F</b> as evolution eventsion | Randall 1967                   | 1 (43)       |
| Emerald parrottish              | Prado and Heck 2011            | 1 (14)       |
| French angelfish                | Batista <i>et al.</i> 2012     | 3 (15)       |
|                                 | Feddern 1968                   | 1 (41)       |
|                                 | Gomez et al. 2004              | 1 (1)        |
|                                 | Randall 1967                   | 1 (23)       |
| Gray angelfish                  | Feddern 1968                   | 1 (66)       |
|                                 | Gomez et al. 2004              | 1 (34)       |
| -                               | Randall 1967                   | 1 (34)       |
| Green razor                     | Randall 1967                   | 1 (12)       |
| Midnight parrotfish             | Randall 1967                   | 1 (12)       |
| Ocean surgeonfish               | Ferreira <i>et al.</i> 2006    | 1 (20)       |
|                                 | Nagelkerken <i>et al.</i> 2006 | 1 (10)       |
|                                 | Randall 1967                   | 1 (23)       |
| Parrotfish parrotfish           | Gomez <i>et al.</i> 2004       | 1 (18)       |
| Princess parrotfish             | Randall 1967                   | 1 (8)        |
| Queen angelfish                 | Feddern 1968                   | 1 (36)       |
|                                 | Randall 1967                   | 1 (26)       |
| Queen parrotfish                | Randall 1967                   | 1 (14)       |
| Rainbow parrotfish              | Randall 1967                   | 1 (15)       |
| Redband parrotfish              | Randall 1967                   | 1 (11)       |
| Redfin parrotfish               | Randall 1967                   | 1 (18)       |
| Redtail parrotfish              | Nagelkerken <i>et al.</i> 2006 | 1 (7)        |
|                                 | Randall 1967                   | 1 (6)        |
| Rock beauty                     | Feddern 1968                   | 1 (42)       |
|                                 | Neudecker 1979                 | 1 (6)        |
|                                 | Randall 1967                   | 1 (24)       |
| Stoplight parrotfish            | Randall 1967                   | 1 (20)       |
| Striped parrotfish              | Nagelkerken <i>et al.</i> 2006 | 1 (26)       |
|                                 | Randall 1967                   | 1 (9)        |
| Threespot damselfish            | Dromard et al. 2013            | 2 (33)       |
|                                 | Randall 1967                   | 1 (18)       |
| Yellowtail damselfish           | Randall 1967                   | 1 (42)       |
| (54) Surface pelagics           |                                | 23 (1,642)   |
| Àgulon                          | Randall 1967                   | 1 (7)        |
| Balao                           | Randall 1967                   | 1 (9)        |
| Ballyhoo                        | Berkeley and Houde 1978        | 1 (261)      |
| -                               | Randall 1965                   | 1 (11)       |

| Functional group/species  | Reference                      | Observations<br>(Stomachs) |
|---------------------------|--------------------------------|----------------------------|
| Ballyhoo                  | Randall 1967                   | 1 (39)                     |
| Flvinafish                | Casazza 2008                   | 10 (212)                   |
| . iyingilen               | Lewis <i>et al.</i> 1962       | 1 (258)                    |
|                           | Lipskava 1980                  | 2 (414)                    |
|                           | Lipskava 1980                  | 1 (234)                    |
|                           | Van Noord <i>et al.</i> 2013   | 1 (11)                     |
| Halfbeak                  | Berkeley and Houde 1978        | 1 (98)                     |
|                           | Carr and Adams 1973            | 1 (77)                     |
| Houndfish                 | Randall 1967                   | 1 (11)                     |
| (56) Oceanic planktivores |                                | 31 (1.565)                 |
| Argentine                 | Bowman <i>et al.</i> 2000      | 6 (76)                     |
| Armorhead                 | Seki and Somerton 1994         | 1 (221)                    |
| Hatchetfish               | Hopkins and Baird 1985         | 4 (741)                    |
|                           | Merret and Roe 1974            | 6 (170)                    |
| Lanternfish               | Alwis and Giosaeter 1988       | 11 (331)                   |
|                           | Bowman <i>et al.</i> 2000      | 2 (19)                     |
| Luminous hake             | Darnell 1991                   | 1 (7)                      |
| (57) Sardine-herring-scad |                                | 51 (2.797)                 |
| Alabama shad              | Mickle <i>et al.</i> 2013      | 1 (NA)                     |
| American shad             | Bowman e tal 2000              | 1 (21)                     |
| Atlantic herring          | Bowman e tal 2000              | 1 (108)                    |
| Atlantic thread herring   | Gomez et al. 2004              | 1 (66)                     |
| Bigeve scad               | Bowman et al. 2000             | 1 (10)                     |
| 3-9                       | Gomez et al. 2004              | 1 (93)                     |
|                           | Randall 1967                   | 1 (12)                     |
| Blueback herring          | Bowman e tal 2000              | 1 (9)                      |
| 5                         | Creed 1985                     | 1 (103)                    |
| Dwarf round herring       | Randall 1967                   | 1 (18)                     |
| False pilchard            | Randall 1967                   | 1 (12)                     |
| Gizzard shad              | Winemiller et al. 2007         | 1 (0)                      |
| Herring                   | McMichael Unknown              | 1 (447)                    |
| Mackerel scad             | Gomez <i>et al.</i> 2004       | 1 (2)                      |
|                           | Randall 1967                   | 1 (2)                      |
| Redear sardine            | Nagelkerken <i>et al.</i> 2006 | 1 (6)                      |
|                           | Randall 1967                   | 1 (24)                     |
| Rough scad                | Bowman <i>et al.</i> 2000      | 1 (11)                     |
| -                         | Darnell 1991                   | 1 (23)                     |
|                           | Divita <i>et al.</i> 1983      | 1 (2)                      |
| Round herring             | Bowman e tal 2000              | 1 (84)                     |
| Round sardinella          | Gomez <i>et al.</i> 2004       | 1 (143)                    |
| Round scad                | Bowman <i>et al.</i> 2000      | 1 (3)                      |
|                           | Divita <i>et al.</i> 1983      | 1 (3)                      |

| Functional group/species | Reference                          | Observations |
|--------------------------|------------------------------------|--------------|
|                          | Reference                          | (Stomachs)   |
| Round scad               | DonaldsonClavijo 1994              | 1 (180)      |
|                          | Hales 1986                         | 3 (416)      |
|                          | Randall 1967                       | 1 (10)       |
| Sardine                  | Carr and Adams 1973                | 2 (28)       |
|                          | McMichael UNK                      | 1 (220)      |
| Sardinella               | Divita <i>et al.</i> 1983          | 1 (1)        |
|                          | Tsikliras <i>et al.</i> 2005       | 7 (87)       |
| Scaled herring           | Gomez <i>et al.</i> 2004           | 1 (30)       |
| Scaled sardine           | Motta 1995                         | 1 (30)       |
|                          | Odom and Heald 1972                | 1 (32)       |
|                          | Vega Cendejas <i>et al.</i> 1994   | 1 (326)      |
| Spanish sardine          | Bowman e tal 2000                  | 1 (8)        |
| Thread herring           | Carr and Adams 1973                | 3 (56)       |
|                          | Randall 1967                       | 1 (17)       |
|                          | Vega Cendejas <i>et al.</i> 1994   | 1 (74)       |
|                          | Vega Cendejas <i>et al.</i> 1997   | 1 (80)       |
| (58-62) Menhaden         |                                    | 8 (723)      |
| Finescale menhaden       | Castillo Rivera <i>et al.</i> 1996 | 1 (100)      |
|                          | Divita <i>et al.</i> 1983          | 1 (1)        |
| Gulf menhaden            | Castillo Rivera <i>et al.</i> 1996 | 1 (100)      |
|                          | Deegan <i>et al.</i> 1990          | 1 (0)        |
|                          | Matlock and Garcia 1983            | 1 (5)        |
|                          | Weaver and Holloway 1974           | 1 (0)        |
|                          | Winemiller et al. 2007             | 1 (0)        |
| Menhaden                 | Govoni <i>et al.</i> 1983 1983     | 1 (517)      |
| (63) Anchovy-silverside- | killifish                          | 62 (7,726)   |
| Anchovy                  | Darnell 1958                       | 5 (81)       |
|                          | Odum and Heald 1972                | 1 (27)       |
| Bay anchovy              | Carr and Adams 1973                | 2 (73)       |
|                          | Peebles and Hopkins 1993           | 7 (409)      |
|                          | Sheridan 1978                      | 1 (3,399)    |
|                          | Weaver and Holloway 1974           | 1 (0)        |
| Diamond killifish        | Odum and Heald 1972                | 1 (28)       |
| Goldspotted killifish    | Ley <i>et al.</i> 1994             | 1 (334)      |
|                          | Motta 1995                         | 1 (30)       |
|                          | Odum and Heald 1972                | 1 (81)       |
| Gulf killifish           | Alexander 1983                     | 1 (73)       |
|                          | Harrington and Harrington 1961     | 1 (90)       |
|                          | Ley <i>et al.</i> 1994             | 1 (248)      |
|                          | Minello <i>et al.</i> 1989         | 2 (44)       |
|                          | Perschbacher and Strawn 1986 1986  | 1 (43)       |
|                          | Rozas and LaSalle 1990             | 1 (104)      |

| Functional group/species | Reference                       | Observations |
|--------------------------|---------------------------------|--------------|
|                          |                                 | (Stomachs)   |
| Least killifish          | Odum and Heald 1972             | 1 (22)       |
| Longnose killifish       | Bennett 1973                    | 1 (318)      |
|                          | Motta 1995                      | 1 (30)       |
| Marsh killifish          | Harrington and Harrington 1961  | 1 (88)       |
| Mosquitofish             | Harrington and Harrington 1961  | 1 (400)      |
|                          | Odum and Heald 1972             | 1 (87)       |
| Rainwater killifish      | Harrington and Harrington 1961  | 1 (400)      |
|                          | Odum and Heald 1972             | 1 (74)       |
|                          | Weaver and Holloway 1974        | 1 (0)        |
| Reef silverside          | Randall 1967                    | 1 (14)       |
| Sailfin molly            | Weaver and Holloway 1974        | 1 (0)        |
| Sheepshead minnow        | Alexander 1983                  | 1 (114)      |
|                          | Harrington and Harrington 1961  | 1 (400)      |
|                          | Odum and Heald 1972             | 1 (44)       |
| Silverside               | Bowman <i>et al.</i> 2000       | 1 (6)        |
|                          | Carr and Adams 1973             | 7 (278)      |
|                          | Darnell 1958                    | 3 (55)       |
|                          | Odum and Heald 1972             | 1 (108)      |
|                          | Randall 1967                    | 1 (9)        |
| Striped anchovy          | Bowman <i>et al.</i> 2000       | 1 (14)       |
|                          | Carr and Adams 1973             | 4 (121)      |
|                          | Motta 1995                      | 1 (30)       |
| Tidewater silverside     | Alexander 1983                  | 1 (50)       |
| (64) Mullet              |                                 | 29 (2,972)   |
| Grey mullet              | Alexander 1983                  | 1 (37)       |
| -                        | Blanco <i>et al.</i> 2003       | 2 (3)        |
|                          | Collins 1981                    | 2 (221)      |
|                          | Eggold and Motta 1992           | 8 (200)      |
|                          | Hadwen <i>et al.</i> 2007       | 1 (23)       |
|                          | Harrington and Harrington 1961  | 1 (399)      |
|                          | Kanou <i>et al.</i> 2004        | 2 (53)       |
|                          | Larson and Shanks 1996          | 2 (20)       |
|                          | Modou <i>et al.</i> 2014        | 1 (1,478)    |
|                          | Odum 1970                       | 1 (0)        |
|                          | Platell et al. 2006             | 1 (46)       |
|                          | Ramirez Luna <i>et al.</i> 2014 | 1 (43)       |
|                          | Winemiller et al. 2007          | 1 (0)        |
| White mullet             | Austin and Austin 1971          | 1 (45)       |
|                          | Gomez <i>et al.</i> 2004        | 1 (286)      |
|                          | Larson and Shanks 1996          | 1 (9)        |
|                          | Randall 1967                    | 1 (13)       |
|                          | Sanchez 2002                    | 1 (96)       |

| Functional group/species | Reference                 | Observations<br>(Stomachs) |
|--------------------------|---------------------------|----------------------------|
| (65) Butterfish          |                           | 12 (873)                   |
| Butterfish               | Bowman <i>et al.</i> 2000 | 6 (680)                    |
|                          | Darnell 1991              | 2 (86)                     |
|                          | Divita <i>et al.</i> 1983 | 1 (6)                      |
|                          | Horn 1970                 | 1 (20)                     |
|                          | Mansueti 1963             | 1 (36)                     |
|                          | Oviatt and Kramer 1977    | 1 (45)                     |

## Appendix 1 and 2 literature cited

- Abitia-Cárdenas, L., D. Arizmendi-Rodríguez, N. Gudiño-González, and F. Galván-Magaña. 2010. Feeding of blue marlin *Makaira nigricans* off Mazatlan, Sinaloa, Mexico. Latin American Journal of Aquatic Research 38(2):281–285.
- Abitia-Cardenas, L. A., F. Galvan-Magaña, F. J. Gutierrez-Sanchez, J. Rodriguez-Romero, B. Aguilar-Palomino, and A. Moehl-Hitz. 1999. Diet of blue marlin *Makaira mazara* off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fisheries Research 44(1):95–100.
- Abitia-Cardenas, L. A., F. Galván-Magaña, and J. Rodríguez-Romero. 1997. Food habits and energy values of prey of striped marlin, *Tetrapturus audax*, off the coast of Mexico. Fishery Bulletin 95(2):360–368.
- Adams, A. J., R. K. Wolfe, and C. A. Layman. 2009. Preliminary examination of how humandriven freshwater flow alteration affects trophic ecology of juvenile snook (*Centropomus undecimalis*) in estuarine creeks. Estuaries and Coasts 32(4):819–828.
- Adams, S. M. 1976. Feeding ecology of eelgrass fish communities. Transactions of the American Fisheries Society 105(4):514–519.
- Aggrey-Fynn, J. 2007. The fishery of *Balistes capriscus* (Balistidae) in Ghana and possible reasons for its collapse. Ph.D. diss., 110 p. University of Bremen, Bremen, Germany.
- Aguirre-León, A., and S. Díaz-Ruiz. 2006. Estructura de tallas, madurez gonádica y alimentación del pez *Diapterus rhombeus* (Gerreidae) en el sistema fluvio-deltaico Pom-Atasta, Campeche, México. Revista de Biología Tropical 54(2):599–611.
- Ajemian, M. J., and S. P. Powers. 2012. Habitat-specific feeding by cownose rays (*Rhinoptera bonasus*) of the northern Gulf of Mexico. Environmental Biology of Fishes 95(1):79–97.
- Alexander, S. K. 1983. Summer diet of finfish from nearshore habitats of West Bay, Texas. Texas Journal of Science 35(1):93–95.
- Allen, B., and G. Cliff. 2000. Sharks caught in the protective gill nets off Kwazulu-Natal, South Africa. 9. The spinner shark *Carcharhinus brevipinna* (Müller and Henle). South African Journal of Marine Science 22(1):199–215.
- Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of salt-marsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1):37–50.
- Andaloro, F., and C. Pipitone. 1997. Food and feeding habits of the amberjack, *Seriola dumerili* in the Central Mediterranean Sea during the spawning season. Cahiers de Biologie Marine 38(2):91–96.

- Anderson, C. D., D. D. Roby, and K. Collis. 2004. Foraging patterns of male and female doublecrested cormorants nesting in the Columbia River estuary. Canadian Journal of Zoology 82(4):541–554.
- Ankenbrandt, L. 1985. Food habits of bait-caught skipjack tuna, *Katsuwonus pelamis*, from the southwestern Atlantic Ocean. Fishery Bulletin 83(3):379–393.
- Arendt, M. D., J. E. Olney, and J. A. Lucy. 2001. Stomach content analysis of cobia, *Rachycentron canadum*, from lower Chesapeake Bay. Fishery Bulletin 99(4):665–670.
- Arizmendi-Rodríguez, D. I., L. A. Abitia-Cárdenas, F. Galván-Magaña, and I. Trejo-Escamilla. 2006. Food habits of sailfish *Istiophorus platypterus* off Mazatlan, Sinaloa, Mexico. Bulletin of Marine Science 79(3):777–791.
- Armitage, T. M., and W. S. Alevizon. 1978. The diet of the Florida pompano, *Trachinotus carolinus*, along the east coast of central Florida. Florida Scientist 43(1):19–26.
- Austin, H., and S. Austin. 1971. The feeding habits of some juvenile marine fishes from the mangroves in western Puerto Rico. Caribbean Journal of Science 11(3-4):171–178.
- Avendaño-Alvarez, J. O., H. Pérez-España, D. Salas-Monreal, and E. García-Rodríguez. 2013. Captures and Diet of Three Sharks Species in the Veracruz Reef System. Open Journal of Marine Science 2013(3):66–73.
- Aygen, D., and S. D. Emslie. 2006. Royal Tern (*Sterna maxima*) Chick Diet at Fisherman Island National Wildlife Refuge, Virginia. Waterbirds 29(3):395–400.
- Bachok, Z., M. Mansor, and R. Noordin. 2004. Diet composition and food habits of demersal and pelagic marine fishes from Terengganu waters, east coast of Peninsular Malaysia. NAGA, WorldFish Center Quarterly 27(3-4):41–47.
- Badalamenti, F., G. D'Anna, L. Lopiano, D. Scilipoti, and A. Mazzola. 1995. Feeding habits of young-of-the-year greater amberjack *Seriola dumerili* (Risso, 1810) along the N/W Sicilian Coast. Scientia Marina 59(3-4):317–323.
- Bahou, L., T. Koné, V. N'Douba, K. J. N'Guessan, E. P. Kouamélan, and G. B. Gouli. 2007. Food composition and feeding habits of little tunny (*Euthynnus alletteratus*) in continental shelf waters of Côte d'Ivoire (West Africa). ICES Journal of Marine Science 64(5):1044– 1052.
- Bailey, H. K. 1995. Potential interactive effects of habitat complexity and sub-adults on youngof-the-year red snapper (*Lutjanus campechanus*) behavior. M.S. thesis, 56 p. University of South Alabama, Mobile, AL.
- Bakhoum, S. A. 2007. Diet overlap of immigrant narrow–barred Spanish mackerel Scomberomorus commerson (Lac., 1802) and the largehead hairtail ribbonfish Trichiurus lepturus (L., 1758) in the Egyptian Mediterranean coast. Animal Biodiversity and Conservation 30(2):147–160.
- Baldwin, W. P. 1946. Brown pelican colony on Cape Romain Refuge increases. Auk 63:103– 104.
- Bannerot, S. P. 1984. The dynamics of exploited groupers (Serranidae): an investigation of the protogynous hermaphroditic reproductive strategy. Ph.D. diss., 393 p. University of Miami, Coral Gables, FL.
- Barbini, S. A., L. O. Lucifora, and N. M. Hozbor. 2011. Feeding habits and habitat selectivity of the shortnose guitarfish, *Zapteryx brevirostris* (Chondrichthyes, Rhinobatidae), off north Argentina and Uruguay. Marine Biology Research 7(4):365–377.
- Baremore, I. E. 2007. Feeding ecology of the Atlantic angel shark in the northeastern Gulf of Mexico. M.S. thesis, 78 p. University of Florida, Gainesville, FL.
- Baremore, I. E., D. J. Murie, and J. K. Carlson. 2010. Seasonal and size-related differences in diet of the Atlantic angel shark *Squatina dumeril* in the northeastern Gulf of Mexico. Aquatic Biology 8(2):125–136.

- Barichivich, W. J., K. J. Sulak, and R. R. Carthy. 1999. Feeding ecology and habitat affinities of Kemp's ridley sea turtles (*Lepidochelys kempi*) in the Big Bend, Florida. Annual report to National Marine Fisheries Service, Panama City, FL.
- Barr, J. 1996. Aspects of common loon (*Gavia immer*) feeding biology on its breeding ground. Hydrobiologia 321(2):119–144.
- Barreiros, J. P., T. Morato, R. S. Santos, and A. E. S. d. Borba. 2003. Interannual changes in the diet of the almaco jack *Seriola rivoliana* (Perciformes: Carangidae) from the Azores. Cybium 27(1):37–40.
- Barros, N. B. 1992. Food Habits. *In*: Report of investigation of 1990 Gulf of Mexico bottlenose dolphin strandings, (Hansen, L. J. ed.), p 29–34. NOAA, NMFS, Southeast Fisheries Science Center, Miami, FL.
- Barros, N. B. 1993. Feeding ecology and foraging strategies of bottlenose dolphins on the central east coast of Florida. Ph.D. diss., 328 p. University of Miami, Coral Gables, FL.
- Barros, N. B., and D. K. Odell. 1990. Food habits of bottlenose dolphins in the southeastern United States. *In*: The bottlenose dolphin (Leatherwood, S., and R. R. Reeves, eds.), p 309-328. Academic Press, Inc., San Diego, CA.
- Barros, N. B., and R. S. Wells. 1998. Prey and feeding patterns of resident bottlenose dolphins (*Tursiops truncatus*) in Sarasota Bay, Florida. Journal of Mammalogy 79(3):1045–1059.
- Barry, K., R. Condrey, W. Driggers, and C. Jones. 2008. Feeding ecology and growth of neonate and juvenile blacktip sharks *Carcharhinus limbatus* in the Timbalier–Terrebone Bay complex, LA, USA. Journal of Fish Biology 73(3):650–662.
- Barry, K. P. 2002. Feeding Habits of Blacktip Sharks, *Carcharhinus limbatus*, and Atlantic Sharpnose Sharks, *Rhizoprionodon terraenovae*, in Louisiana Coastal Waters. M.S. thesis, 72 p. University of South Alabama, Mobile, AL.
- Bass, R. J., and J. W. Avault JR. 1975. Food habits, length-weight relationship, condition factor, and growth of juvenile red drum, *Sciaenops ocellata*, in Louisiana. Transactions of the American Fisheries Society 104(1):35–45.
- Batista, D., G. R. d. S. Muricy, B. R. Andréa, and R. C. Villaça. 2012. High intraspecific variation in the diet of the french angelfish *Pomacanthus paru* in the south-western Atlantic. Brazilian Journal of Oceanography 60(3):449–454.
- Battaglia, P., F. Andaloro, P. Consoli, V. Esposito and others. 2013. Feeding habits of the Atlantic bluefin tuna, *Thunnus thynnus* (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgoland Marine Research 67(1):97–107.
- Batts, B. S. 1972. Food habits of the skipjack tuna, *Katsuwonus pelamis*, in North Carolina waters. Chesapeake Science 13(3):193–200.
- Beaumariage, D. S. 1973. Age, growth, and reproduction of king mackerel, *Scomberomorus cavalla*, in Florida. Florida Marine Research Publication. 45 p.
- Beaumariage, D. S., and L. H. Bullock. 1976. Biological research on snappers and groupers as related to fishery management requirements. *In*: Proceedings: colloquium on snappergrouper fishery resources of the western central Atlantic Ocean (H. R. Bullis, Jr. and A. C. Jones, eds.), 86-94 p. Florida Sea Grant College Program Report No. 17, Gainesville, FL.
- Beebe, W., and J. Tee Van. 1928. The fishes of Port-Au-Prince Bay, Haiti, with a summary of the known species of marine fishes of the island of Haiti and Santo Domingo. 279 p. New York Zoological Society.
- Bennett, J. A. 1973. Food habits and feeding chronology of the longnose killifish *Fundulus similis* (Baird and Girard) from St. Louis Bay, Mississippi. M.S. thesis, 32 p. Mississippi State University, MS.
- Berkeley, S. A., and E. D. Houde. 1978. Biology of two exploited species of halfbeaks, *Hemiramphus brasiliensis* and *H. balao* from southeast Florida. Bulletin of Marine Science 28(4):624–644.

Bernard, H. J., J. Hedgepeth, and S. Reilly. 1985. Stomach contents of albacore, skipjack, and bonito caught off southern California during summer 1983. CaCOFL Rep 26:175–182.

- Berruti, A., L. Underhill, P. Shelton, C. Moloney, and R. Crawford. 1993. Seasonal and interannual variation in the diet of two colonies of the Cape gannet (*Morus capensis*) between 1977-78 and 1989. Colonial Waterbirds 16(2):158–175.
- Bethea, D. M., J. A. Buckel, and J. K. Carlson. 2004. Foraging ecology of the early life stages of four sympatric shark species. Marine Ecology Progress Series 268(1):245–264.
- Bethea, D. M., J. K. Carlson, J. A. Buckel, and M. Satterwhite. 2006. Ontogenetic and siterelated trends in the diet of the Atlantic sharpnose shark *Rhizoprionodon terraenovae* from the northeast Gulf of Mexico. Bulletin of Marine Science 78(2):287–307.
- Bethea, D. M., J. K. Carlson, L. D. Hollensead, Y. P. Papastamatiou, and B. S. Graham. 2011. A comparison of the foraging ecology and bioenergetics of the early life-stages of two sympatric hammerhead sharks. Bulletin of Marine Science 87(4):873–889.
- Bethea, D. M., L. Hale, J. K. Carlson, E. Cortés, C. A. Manire, and J. Gelsleichter. 2007. Geographic and ontogenetic variation in the diet and daily ration of the bonnethead shark, *Sphyrna tiburo*, from the eastern Gulf of Mexico. Marine Biology 152(5):1009– 1020.
- Bielsa, L., and R. F. Labisky. 1987. Food habits of blueline tilefish, *Caulolatilus microps*, and snowy grouper, *Epinephelus niveatus*, from the lower Florida Keys. Northeast Gulf Science 9(2):77–87.
- Birkeland, C., and S. Neudecker. 1981. Foraging behavior of two Caribbean chaetodontids: *Chaetodon capistratus* and *C. aculeatus*. Copeia 1981(1):169–178.
- Bittar, V. T., D. R. Awabdi, W. C. T. Tonini, M. V. Vidal Junior, and A. P. M. Di Beneditto. 2012. Feeding preference of adult females of ribbonfish *Trichiurus lepturus* through prey proximate-composition and caloric values. Neotropical Ichthyology 10(1):197–203.
- Bittar, V. T., and A. P. M. Di Beneditto. 2009. Diet and potential feeding overlap between *Trichiurus lepturus* (Osteichthyes: Perciformes) and *Pontoporia blainvillei* (Mammalia: Cetacea) in northern Rio de Janeiro, Brazil. Zoologia 26(2):374–378.
- Blaber, S., and C. Bulman. 1987. Diets of fishes of the upper continental slope of eastern Tasmania: content, calorific values, dietary overlap and trophic relationships. Marine Biology 95(3):345–356.
- Blackwell, B. F., W. B. Krohn, N. R. Dube, and A. J. Godin. 1997. Spring prey use by doublecrested cormorants on the Penobscot River, Maine, USA. Colonial Waterbirds 20(1):77– 86.
- Blanco, C., O. Salomon, and J. Raga. 2001. Diet of the bottlenose dolphin (*Tursiops truncatus*) in the western Mediterranean Sea. Journal of the Marine Biological Association of the UK 81(06):1053–1058.
- Blanco, S., S. Romo, M.-J. Villena, and S. Martínez. 2003. Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia 506(1-3):473–480.
- Blewett, D. A., R. A. Hensley, and P. W. Stevens. 2006. Feeding habits of common snook, *Centropomus undecimalis*, in Charlotte Harbor, Florida. Gulf and Caribbean Research 18:1–13.
- Blus, L. J., T. G. Lamont, and B. S. J. Neely. 1979. Effects of thickness, organochlorine residues on eggshell reproduction, and population status of brown pelicans (*Pelecanus occidentalis*) in South Carolina and Florida, 1969-76. Pesticides Monitoring Journal 12:172–184.
- Boothby, R. N., and J. W. Avault Jr. 1971. Food habits, length-weight relationship, and condition factor of the red drum (*Sciaenops ocellata*) in southeastern Louisiana. Transactions of the American Fisheries Society 100(2):290–295.
- Bortone, S. A. 1971. Studies on the biology of the sand perch, *Diplectrum formosum* (Perciformes: Serranidae). Research Technical Series 65, 27 p.

- Boschung, H. T. J. 1957. The fishes of Mobile Bay and the Gulf coast of Alabama. Ph.D. diss., 633 p. University of Alabama, Tuscaloosa, AL.
- Bouchereau, J.-L., S. Cordonnier, and L. Nelson. 2012. Structure, reproduction, and diet of *Lophogobius cyprinoides* (Gobiidae) in a lagoon of Guadeloupe (French West Indies). CBM-Cahiers de Biologie Marine 53(1):1–16.
- Bowen, S. R. 2011. Diet of Bottlenose Dolphins Tursiops truncatus in the Northwest Panhandle and Foraging Behavior Near Savannah, Georgia. M.S. thesis, 162 p. Savannah State University, GA.
- Bowman, R. E., C. E. Stillwell, W. L. Michaels, and M. D. Grosslein. 2000. Food of Northwest Atlantic fishes and two common species of squid. NOAA Technical Memorandum NMFS-NE-155, 137 p.
- Bradley, E., and C. Bryan. Life history and fishery of the red snapper (*Lutjanus campechanus*) in the northwestern Gulf of Mexico: 1970–1974. Proceedings of the 27th Gulf and Caribbean Fisheries Institute, p. 77–106.
- Brock, R. E. 1984. A contribution to the trophic biology of the blue marlin (*Makaira nigricans* Lacépède, 1802) in Hawaii. Pacific Science 38(2):141–149.
- Brook, I. M. 1977. Trophic relationships in a seagrass community (*Thalassia testudinum*), in Card Sound, Florida. Fish diets in relation to macrobenthic and cryptic faunal abundance. Transactions of the American Fisheries Society 106(3):219–229.
- Browder, J. A., C. H. Saloman, S. P. Naughton, and C. S. Manooch. 1990. Trophic relations of king mackerel in the coastal shelf ecosystem. *In*: Florida Department of Natural Resources, National Marine Fisheries Service, King Mackerel Symposium, 20 p.
- Brulé, T., D. O. Avila, M. S. Crespo, and C. Déniel. 1994. Seasonal and diel changes in diet composition of juvenile red grouper (*Epinephelus morio*) from Campeche Bank. Bulletin of Marine Science 55(1):255–262.
- Brulé, T., and L. R. G. Canché. 1993. Food habits of juvenile red groupers, *Epinephelus morio* (Valenciennes, 1828), from Campeche Bank, Yucatan, Mexico. Bulletin of Marine Science 52(2):772–779.
- Brulé, T., and C. Deniel (1993) Biological research on the red grouper (*Epinephelus morio*) from the southern Gulf of Mexico. *In*: Biology, fisheries and culture of tropical groupers and snappers (Arreguín-Sánchez, F., J. Munro, M. C. Balgos, and D. Paul, eds.). International Center for Living Aquatic Resources Management, Campeche, Mexico.
- Brulé, T., A. Mena-Loría, E. Pérez-Díaz, and X. Renán. 2011. Diet of juvenile gag *Mycteroperca microlepis* from a non-estuarine seagrass bed habitat in the southern Gulf of Mexico. Bulletin of Marine Science 87(1):31–43.
- Brulé, T., E. Puerto-Novelo, E. Pérez-Díaz, and X. Renán-Galindo. 2005. Diet composition of juvenile black grouper (*Mycteroperca bonaci*) from coastal nursery areas of the Yucatan Peninsula, Mexico. Bulletin of Marine Science 77(3):441–452.
- Buckel, J., M. Fogarty, and D. Conover. 1999. Foraging habits of bluefish, *Pomatomus saltatrix*, on the US east coast continental shelf. Fishery Bulletin 97(4):758–775.
- Bugoni, L., and C. M. Vooren. 2004. Feeding ecology of the Common Tern *Sterna hirundo* in a wintering area in southern Brazil. Ibis 146(3):438–453.
- Bullock, L. H., and M. D. Murphy. 1994. Aspects of the life history of the yellowmouth grouper, *Mycteroperca interstitialis*, in the eastern Gulf of Mexico. Bulletin of Marine Science 55(1):30–45.
- Bullock, L. H., and G. B. Smith. 1991. Seabasses (Pisces: Serranidae). 206 p. St. Petersburg, FL.
- Bur, M. T., M. A. Stapanian, G. Bernhardt, and M. W. Turner. 2008. Fall diets of red-breasted merganser (*Mergus serrator*) and walleye (*Sander vitreus*) in Sandusky Bay and adjacent waters of western Lake Erie. The American Midland Naturalist 159(1):147–161.

- Burke, V. J., S. J. Morreale, and E. A. Standora. 1994. Diet of the Kemp's ridley sea turtle, *Lepidochelys kempii*, in New York waters. Fishery Bulletin 92(1):26–32.
- Burke, V. J., E. A. Standora, and S. J. Morreale. 1993. Diet of juvenile Kemp's ridley and loggerhead sea turtles from Long Island, New York. Copeia 1993(4):1176–1180.
- Burnett-Herkes, J. 1941. Contribution to the biology of the red hind, *Epinephelus guttatus*, a commercially important serranid fish from the tropical Western Atlantic. Ph.D. diss., 155 p. University of Miami, Coral Gables, FL.
- Bush, A. 2003. Diet and Diel Feeding Periodicity of Juvenile Scalloped Hammerhead Sharks, *Sphyrna lewini*, in Kāne'ohe Bay, Ō'ahu, Hawai'i. Environmental Biology of Fishes 67(1):1–11.
- Butler, C. M. 2007. Atlantic Bluefin Tuna (*Thunnus thynnus*) Feeding Ecology and Potential Ecosystem Effects During Winter in North Carolina. M.S. thesis, 106 p. North Carolina State University, Raleigh, NC.
- Cabrera-Chávez-Costa, A., F. Galván-Magaña, and O. Escobar-Sánchez. 2010. Food habits of the silky shark *Carcharhinus falciformis* (Müller & Henle, 1839) off the western coast of Baja California Sur, Mexico. Journal of Applied Ichthyology 26(4):499–503.
- Calixto-Albarrán, I., and J.-L. Osorno. 2000. The diet of the Magnificent Frigatebird during chick rearing. The Condor 102(3):569–576.
- Camber, C. I. 1955. A Survey of the Red Snapper Fishery of the Gulf of Mexico: With Special Reference to the Campeche Banks. 64 p. State of Florida Board of Conservation, Marine Laboratory, Coral Gables, FL.
- Campo, D., E. Mostarda, L. Castriota, M. Scarabello, and F. Andaloro. 2006. Feeding habits of the Atlantic bonito, Sarda sarda (Bloch, 1793) in the southern Tyrrhenian sea. Fisheries Research 81(2):169–175.
- Campo, J. J., B. C. Thompson, J. C. Barron, C. T. Raymond, P. Durocher, and S. Gutreuter. 1993. Diet of Double-Crested Cormorants Wintering in Texas. Journal of Field Ornithology 64(2):135–144.
- Canto-Maza, W. G., and M. E. Vega-Cendejas. 2008. Hábitos alimenticios del pez *Lagodon rhomboides* (Perciformes: Sparidae) en la laguna costera de Chelem, Yucatán, México. Revista de Biología Tropical 56(4):1837–1846.
- Carr, W., and C. Adams. 1972. Food habits of juvenile marine fishes: evidence of the cleaning habit in leatherjacket, *Oligoplites saurus*, and the spottail pinfish, *Diplodus holbrooki*. Fishery Bulletin 70(4):1111–1120.
- Carr, W. E., and C. A. Adams. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Transactions of the American Fisheries Society 102(3):511–540.
- Carter, J., G. J. Marrow, and V. Pryor. Aspects of the ecology and reproduction of Nassau grouper, *Epinephelus striatus*, off the coast of Belize, Central America. Proceedings of the 43rd Gulf and Caribbean Fisheries Institute, p. 65–111.
- Casazza, T. L. 2008. Community structure and diets of fishes associated with pelagic Sargassum and open-water habitats off North Carolina. M.S. thesis, 135 p. University of North Carolina, Wilmington, NC.
- Castillo-Rivera, B. M., A. Kobelkowsky, and A. Chávez. 2000. Feeding biology of the flatfish *Citharichthys spilopterus* (Bothidae) in a tropical estuary of Mexico. Journal of Applied Ichthyology 16(2):73–78.
- Castillo-Rivera, M., A. Kobelkowsky, and V. Zamayoa. 1996. Food resource partitioning and trophic morphology of *Brevoortia gunteri* and *B. patronus*. Journal of Fish Biology 49(6):1102–1111.
- Castillo-Rivera, M., R. Zárate-Hernández, and I. H. Salgado-Ugarte. 2007. Hábitos de alimento de juveniles y adultos de *Archosargus probatocephalus* (Teleostei: Sparidae) en un estuario tropical de Veracruz. Hidrobiológica 17(2):119–126.

- Castriota, L., M. P. Scarabello, M. G. Finoia, M. Sinopoli, and F. Andaloro. 2005. Food and feeding habits of pearly razorfish, *Xyrichtys novacula* (Linnaeus, 1758), in the southern Tyrrhenian Sea: variation by sex and size. Environmental Biology of Fishes 72(2):123–133.
- Castro, J. I. 1993. The biology of the finetooth shark, *Carcharhinus isodon*. Environmental Biology of Fishes 36(3):219–232.
- Castro, J. I. 1996. Biology of the blacktip shark, *Carcharhinus limbatus*, off the southeastern United States. Bulletin of Marine Science 59(3):508–522.
- Castro, J. I. 2000. The biology of the nurse shark, *Ginglymostoma cirratum*, off the Florida east coast and the Bahama Islands. Environmental Biology of Fishes 58(1):1–22.
- Catry, T., J. A. Ramos, S. Jaquemet, L. Faulquier and others. 2009. Comparative foraging ecology of a tropical seabird community of the Seychelles, western Indian Ocean. Marine Ecology Progress Series 374:259–272.
- Chancollon, O., C. Pusineri, and V. Ridoux. 2006. Food and feeding ecology of Northeast Atlantic swordfish (*Xiphias gladius*) off the Bay of Biscay. ICES Journal of Marine Science 63(6):1075–1085.
- Chase, B. C. 2002. Differences in diet of Atlantic bluefin tuna (*Thunnus thynnus*) at five seasonal feeding grounds on the New England continental shelf. Fishery Bulletin 100(2):168–180.
- Chavance, P., D. Flores, A. Yañez-Arancibia, and F. Amezcua. 1984. Ecología, biología y dinámica de las poblaciones de *Bairdiella chrysoura* en la Laguna de Terminos, sur del Golfo de Mexico (Pisces: Sciaenidae). An Inst Cienc Mar Limnol Univ Nalc Autón Méx 11(1):123–162.
- Cherel, Y., R. Sabatié, M. Potier, F. Marsac, and F. Ménard. 2007. New information from fish diets on the importance of glassy flying squid (*Hyaloteuthis pelagica*)(Teuthoidea: Ommastrephidae) in the epipelagic cephalopod community of the tropical Atlantic Ocean. Fishery Bulletin 105(1):147–152.
- Chi-Espínola, A. A., and M. E. Vega-Cendejas. 2013. Hábitos alimenticios de *Sphoeroides testudineus* (Perciformes: Tetraodontidae) en el sistema lagunar de Ría Lagartos, Yucatán, México. Revista de Biologia Tropical 61(2):849–858.
- Childress, U. R. 1962. Inventory of vertebrate forms present and relative abundance. Project Name: Oyster and Fisheries Investigations of Area M-5. Project No. M-5-R-2, Rockport, TX 8 pp.
- Chiou, W.-D., C.-Y. Chen, C.-M. Wang, and C.-T. Chen. 2006. Food and feeding habits of ribbonfish *Trichiurus lepturus* in coastal waters of south-western Taiwan. Fisheries Science 72(2):373–381.
- Choy, C. A., E. Portner, M. Iwane, and J. C. Drazen. 2013. Diets of five important predatory mesopelagic fishes of the central North Pacific. Marine Ecology Progress Series 492:169–184.
- Clark, E., and K. Von Schmidt. 1965. Sharks of the central Gulf coast of Florida. Bulletin of Marine Science 15(1):13–83.
- Clark, R. D., S. Pittman, C. Caldow, J. Christensen and others. 2009. Nocturnal fish movement and trophic flow across habitat boundaries in a coral reef ecosystem (SW Puerto Rico). Caribbean Journal of Science 45(2-3):282–303.
- Clarke, M., D. Clarke, H. R. Martins, and H. M. Da Silva. 1996. The diet of the blue shark (*Prionace glauca* L.) in Azorean waters. Arquipelago Life and Marine Sciences 14A:41– 56.
- Clarke, M., D. Clarke, H. R. Martins, and H. M. Silva. 1995. The diet of swordfish (*Xiphias gladius*) in Azorean waters. Arquipelago Life and Marine Sciences 13A:53–69.

- Clements, W. H., and R. J. Livingston. 1983. Overlap and pollution-induced variability in the feeding habits of filefish (Pisces: Monacanthidae) from Apalachee Bay, Florida. Copeia 1983(2):331–338.
- Cliff, G. 1995. Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 8. The great hammerhead shark *Sphyrna mokarran* (Rüppell). South African Journal of Marine Science 15(1):105–114.
- Cliff, G., and S. Dudley. 1991. Sharks caught in the protective gill nets off Natal, South Africa. 4. The bull shark *Carcharhinus leucas* Valenciennes. South African Journal of Marine Science 10(1):253–270.
- Cliff, G., S. Dudley, and B. Davis. 1990. Sharks caught in the protective gill nets off Natal, South Africa. 3. The shortfin make shark *Isurus oxyrinchus* (Rafinesque). South African Journal of Marine Science 9(1):115–126.
- Clifton, K. B., and P. J. Motta. 1998. Feeding morphology, diet, and ecomorphological relationships among five Caribbean labrids (Teleostei, Labridae). Copeia 1998(4):953–966.
- Cocheret De La Morinière, E., B. Pollux, I. Nagelkerken, M. Hemminga, A. Huiskes, and G. Van der Velde. 2003. Ontogenetic dietary changes of coral reef fishes in the mangroveseagress-reef continuum: stable isotope and gut-content analysis. Marine Ecology Progress Series 246:279–289.
- Collins, A., M. Heupel, R. Hueter, and P. Motta. 2007. Hard prey specialists or opportunistic generalists? An examination of the diet of the cownose ray, *Rhinoptera bonasus*. Marine and Freshwater Research 58(1):135–144.
- Collins, A. B. 2005. An examination of the diet and movement patterns of the atlantic cownose ray rhinoptera bonasus within a southwest florida estuary. M.S. thesis, 87 p. University of South Florida, Tampa, FL.
- Collins, M. R. 1981. The feeding periodicity of striped mullet, *Mugil cephalus* L., in two Florida habitats. Journal of Fish Biology 19(3):307–315.
- Colton, D. E., and W. S. Alevizon. 1983. Feeding ecology of bonefish in Bahamian waters. Transactions of the American Fisheries Society 112(2A):178–184.
- Cortés, E., and S. H. Gruber. 1990. Diet, feeding habits and estimates of daily ration of young lemon sharks, *Negaprion brevirostris* (Poey). Copeia 1990(1):204–218.
- Cortes, E., C. A. Manire, and R. E. Hueter. 1996. Diet, feeding habits, and diel feeding chronology of the bonnethead shark, *Sphyrna tiburo*, in southwest Florida. Bulletin of Marine Science 58(2):353–367.
- Cowan Jr, J. H., K. M. Boswell, K. A. Simonsen, C. R. Saari, and D. Kulaw. 2012. Working paper for red snapper data workshop (SEDAR 31). SEDAR31-DW03, North Charleston, SC 49 pp.
- Crabtree, R. E., C. Stevens, D. Snodgrass, and F. J. Stengard. 1998. Feeding habits of bonefish, *Albula vulpes*, from the waters of the Florida Keys. Fishery Bulletin 96(4):754–766.
- Creed Jr, R. 1985. Feeding, diet, and repeat spawning of blueback herring, *Alosa aestivalis*, from the Chowan River, North Carolina. Fishery Bulletin 83(4):711–716.
- Cressey, R. F., and E. A. Lachner. 1970. The parasitic copepod diet and life history of diskfishes (Echeneidae). Copeia 1970(2):310–318.
- Cruz-Escalona, V. H., M. S. Peterson, L. Campos-Dávila, and M. Zetina-Rejón. 2005. Feeding habits and trophic morphology of inshore lizardfish (*Synodus foetens*) on the central continental shelf off Veracruz, Gulf of Mexico. Journal of Applied Ichthyology 21(6):525– 530.
- Cummings, W. C., B. D. Brahy, and J. Y. Spires. 1966. Sound production, schooling, and feeding habits of the margate, *Haemulon album* Cuvier, off North Bimini, Bahamas. Bulletin of Marine Science 16(3):626–640.

Darcy, G. H. 1981. Food habits of the crested goby, *Lophogobius cyprinoides*, in two Dade County, Florida, waterways. Bulletin of Marine Science 31(4):928–932.

- Darnell, R. M. 1958. Food habits of fishes and larger invertebrates of Lake Pontchartrain, Louisiana, an estuarine community. Institute of Marine Science 5:353–416.
- Darnell, R. M. 1991. Demersal fish food habits analysis. *In*: OCS Study, (MMS eds., p 26. Minerals Management Service, US Department of the Interior, New Orleans, LA.
- Davies, J. H., and S. A. Bortone. 1976. Partial food list of three species of Istiophoridae (Pisces) from the northeastern Gulf of Mexico. Florida Scientist 39(4):249–253.
- Davis, C. 2010. Prey Selection by Young Lemon Sharks (*Negaprion brevirostris*) at Chandeleur Island Nursery Habitats with a Comparison to Three Other Co-Occurring Shark Species. M.S. thesis, 73 p. University of New Orleans, New Orleans, LA.
- Day, D. S. 1960. Inventory of vertebrate forms present and relative abundance. Project Name: General Ecological Survey of Area M-4. Project No. M-4-B-2, 5 p.
- de Alcântara Santos, A. C., and F. N. de Carvalho Rodriguez. 2012. Occurrence and feeding of the pufferfish *Sphoeroides testudineus* (Actinopterygii–Tetraodontiformes) in the western margin of the Bay of Todos os Santos, Bahia, Brasil. Sitientibus série Ciências Biológicas 11(1):31–36.
- de Bruyn, P., S. Dudley, G. Cliff, and M. Smale. 2005. Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 11. The scalloped hammerhead shark *Sphyrna lewini* (Griffith and Smith). African Journal of Marine Science 27(3):517–528.
- de Silva, J. A., R. E. Condrey, and B. A. Thompson. 2001. Profile of shark bycatch in the U.S. Gulf of Mexico menhaden fishery. North American Journal of Fishery Management 21:111–124.
- de Troch, M., J. Mees, and E. Wakwabi. 1998. Diets of abundant fishes from beach seine catches in seagrass beds of a tropical bay (Gazi Bay, Kenya). Belgian Journal of Zoology 128(2):135–154.
- Deegan, L. A., B. J. Peterson, and R. Portier. 1990. Stable isotopes and cellulase activity as evidence for detritus as a food source for juvenile Gulf menhaden. Estuaries 13(1):14– 19.
- Denadai, M., F. Santos, E. Bessa, L. Bernardes, and A. Turra. 2012. Population biology and diet of the puffer fish *Lagocephalus laevigatus* (Tetraodontiformes: Tetraodontidae) in Caraguatatuba Bay, south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom 92(02):407–412.
- Devane JR, J. C. 1978. Food of King Mackerel, *Scomberomorus cavalla*, in Onslow Bay, North Carolina. Transactions of the American Fisheries Society 107(4):583–586.
- di Beneditto, A., R. Ramos, S. Siciliano, R. dos Santos, G. Bastos, and E. Fagundes-Netto. 2001. Stomach contents of delphinids from Rio de Janeiro, southeastern Brazil. Aquatic Mammals 27(1):24–28.
- Diener, R. A., A. Inglis, and G. B. Adams. 1974. Stomach contents of fishes from Clear Lake and tributary waters, a Texas estuarine area. Contributions in Marine Science 18:7–18.
- Dies, J. I., J. Marín, and C. Pérez. 2005. Diet of nesting gull-billed terns in Eastern Spain. Waterbirds 28(1):106–109.
- Dissanayake, D., E. Samaraweera, and C. Amarasiri. 2008. Fishery and feeding habits of yellowfin tuna (*Thunnus albacares*) targeted by coastal tuna longlining in the north western and north eastern coasts of Sri Lanka. Sri Lanka Journal of Aquatic Sciences 13:1–21.
- Divita, R., M. Creel, and P. F. Sheridan. 1983. Foods of coastal fishes during brown shrimp, *Penaeus aztecus*, migration from Texas estuaries (June-July 1981). Fishery Bulletin 81(2):396–404.
- Dixon, R. 1975. Evidence for mesopelagic feeding by the vermilion snapper, *Rhomboplites aurorubens*. Journal of the Elisha Mitchell Scientific Society 91:240–242.

- Dodrill, J., and A. Manooch. 1993. Food and feeding-behavior of adult snowy grouper, *Epinephelus Niveatus* (Valenciennes) (Pisces, Serranidae), collected off the Central North-Carolina Coast with ecological notes on major food groups. Brimleyana 19:101– 135.
- Donaldson, P. L., and I. E. Clavijo. 1994. Diet of round scad (*Decapterus punctatus*) on a natural and an artificial reef in Onslow Bay, North Carolina. Bulletin of Marine Science 55(2-3):501–509.
- Doncel, O., and J. Paramo. 2010. Hábitos alimenticios del pargo rayado, *Lutjanus synagris* (Perciformes: Lutjanidae), en la zona norte del Caribe colombiano. Latin American Journal of Aquatic Research 38(3):413–426.
- Dragovich, A., and T. Potthoff. 1972. Comparative study of food of skipjack and yellowfin tunas off the coast of West Africa. Fishery Bulletin 70(4):1087–1110.
- Dromard, C. R., Y. Bouchon-Navaro, S. Cordonnier, M.-F. Fontaine and others. 2013. Resource use of two damselfishes, *Stegastes planifrons* and *Stegastes adustus*, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. Journal of Experimental Marine Biology and Ecology 440(2013):116–125.
- Duarte, L. O., and C. B. García. 1999. Diet of the mutton snapper *Lutjanus analis* (Cuvier) from the Gulf of Salamanca, Colombia, Caribbean Sea. Bulletin of Marine Science 65(2):453–465.
- Dubiaski-Silva, J., and S. Masunari. 2008. Natural diet of fish and crabs associated with the phytal community of Sargassum cymosum C. Agardh, 1820 (Phaeophyta, Fucales) at Ponta das Garoupas, Bombinhas, Santa Catarina State, Brazil. Journal of Natural History 42(27-28):1907–1922.
- Dudley, S., and G. Cliff. 1993. Sharks caught in the protective gill nets off Natal, South Africa. 7. The blacktip shark *Carcharhinus limbatus* (Valenciennes). South African Journal of Marine Science 13(1):237–254.
- Dudley, S. F., and G. Cliff. 1993. Some effects of shark nets in the Natal nearshore environment. Environmental Biology of Fishes 36(3):243-255.
- Dugoni, J. A., P. J. Zwank, and G. C. Furman. 1986. Food of nesting Bald Eagles in Louisiana. Raptor Research 20(3/4):124–127.
- Durie, C. J., and R. G. Turingan. 2001. Relationship between durophagy and feeding biomechanics in gray triggerfish, *Balistes capriscus*: intraspecific variation in ecological morphology. Florida Scientist 64(1):20–28.
- Eggleston, D., and E. Bochenek. 1990. Stomach contents and parasite infestation of school bluefin tuna *Thunnus thynnus* collected from the middle Atlantic Bight, Virginia. Fishery Bulletin 88(2):389–395.
- Eggleston, D. B., J. J. Grover, and R. N. Lipcius. 1998. Ontogenetic diet shifts in Nassau grouper: trophic linkages and predatory impact. Bulletin of Marine Science 63(1):111–126.
- Eggold, B. T., and P. J. Motta. 1992. Ontogenetic dietary shifts and morphological correlates in striped mullet, *Mugil cephalus*. Environmental Biology of Fishes 34(2):139–158.
- Ellis, J. K., and J. A. Musick. 2007. Ontogenetic changes in the diet of the sandbar shark, Carcharhinus plumbeus, in lower Chesapeake Bay and Virginia (USA) coastal waters. Environmental Biology of Fishes 80(1):51–67.
- Ellis, T. A. 2007. Assessing nursery quality for southern flounder, *Paralichthys lethostigma*, through fish energy content and habitat abiotic conditions. M.S. thesis, 106 p. North Carolina State University, Raleigh, NC.
- Emmanuel, O. L., and E. T. Ajibola. 2010. Food and feeding habits and reproduction in Frillfin goby, *Bathygobius soporator* (Cuvier and Valenciennes, 1837) in the Badagry Creek, Lagos, Nigeria. International Journal of Biodiversity and Conservation 2(12):414–421.

- Erwin, R. M., J. D. Nichols, T. B. Eyler, D. B. Stotts, and B. R. Truitt. 1998. Modeling colony-site dynamics: a case study of gull-billed terns (*Sterna nilotica*) in coastal Virginia. The Auk 115(4):970–978.
- Ewins, P., D. Weseloh, J. Groom, R. Dobos, and P. Mineau. 1994. The diet of Herring Gulls (*Larus argentatus*) during winter and early spring on the lower Great Lakes. Hydrobiologia 279/280:39–55.
- Feddern, H. A. 1968. Systematics and ecology of western Atlantic angelfishes, family Chaetodontidae, with an analysis of hybridization in Holacanthus. Ph.D. diss., 211 p. University of Miami, Coral Gables, FL.
- Feitosa, J. L. L., A. M. Concentino, S. F. Teixeira, and B. P. Ferreira. 2012. Food resource use by two territorial damselfish (Pomacentridae: Stegastes) on South-Western Atlantic algal-dominated reefs. Journal of Sea Research 70(2012):42–49.
- Felder, D. L., and A. H. Chaney. 1979. Decapod crustacean fauna of seven and one-half fathom reef, Texas: species composition, abundance, and species diversity. Contributions in Marine Science 22:1–29.
- Ferreira, C., and J. Gonçalves. 2006. Community structure and diet of roving herbivorous reef fishes in the Abrolhos Archipelago, south-western Atlantic. Journal of Fish Biology 69(5):1533–1551.
- Findholt, S. L., and S. H. Anderson. 1995. Diet and prey use patterns of the American white pelican (*Pelecanus erythrorhynchos*) nesting at Pathfinder Reservoir, Wyoming. Colonial Waterbirds 18(1):58–68.
- Finucane, J. H., C. Grimes, and S. Naughton. 1990. Diets of young king and Spanish mackerel off the southeast United States. Northeast Gulf Science 11(2):145–153.
- Fischer, A., F. Hazin, F. Carvalho, D. Viana, M. Rêgo, and C. Wor. 2009. Biological aspects of sharks caught off the Coast of Pernambuco, Northeast Brazil. Brazilian Journal of Biology 69(4):1173–1181.
- Fitzhugh, G. R., L. B. Crowder, and J. Monaghan, James P. 1996. Mechanisms contributing to variable growth in juvenile southern flounder (*Paralichthys lethostigma*). Canadian Journal of Fisheries and Aquatic Sciences 53(9):1964–1973.
- Fogarty, M. J., S. A. Nesbitt, and C. R. Gilbert. 1981. Diet of nestling brown pelicans in Florida. Florida Field Naturalist 9(3):38–40.
- Ford, R. M. 2012. Diet and Reproductive Biology of the Blacknose Shark (*Carcharhinus acronotus*) from the Southwestern Atlantic Ocean. M.S. thesis, 43 p. University of North Florida, Jacksonville, FL.
- Fore, P. L., and T. W. Schmidt. 1973. Biology of juvenile and adult snook, *Centropomus undecimalis*, in the Ten Thousand Islands, Florida. *In*: Ecosystems analysis of the Big Cypress Swamp and Estuaries. US Environmenal Protection Agency, Athens, Georgia.
- Francis, A. W. 2002. Ontogeny of morphological asymmetry in paralichthyid fishes and its consequences for feeding performance and ecology. Ph.D. diss., 210 p. Florida Institute of Technology, Melbourne, FL.
- Franks, J., E. R. Hoffmayer, J. R. Ballard, N. M. Garber, and A. F. Garber. Diet of wahoo, *Acanthocybium solandri*, from the Northcentral Gulf of Mexico. *In*: Proceedings of the 60th Gulf and Caribbean Fisheries Institute (Glazer R., ed.), 353-362 p.
- Franks, J., and K. VanderKooy. 2000. Feeding habits of juvenile lane snapper *Lutjanus synagris* from Mississippi coastal waters, with comments on the diet of gray snapper *Lutjanus griseus*. Gulf and Caribbean Research 12:11–18.
- Franks, J. S., N. M. Garber, and J. R. Warren. 1996. Stomach contents of juvenile cobia, *Rachycentron canadum*, from the northern Gulf of Mexico. Fishery Bulletin 94(2):374– 380.
- Freeman, B. L., and S. C. Turner. 1977. Biological and fisheries data on tilefish, *Lopholatilus chamaeleonticeps* Goode and Bean. Technical Series Report No. 5, 41 p.

- Freitas, M. O., V. Abilhoa, and G. H. d. C. Silva. 2011. Feeding ecology of *Lutjanus analis* (Teleostei: Lutjanidae) from Abrolhos Bank, Eastern Brazil. Neotropical Ichthyology 9(2):411–418.
- Futch, R. B., and G. E. Bruger. 1976. Age, growth, and reproduction of red snapper in Florida waters. 165-184 pp. Marine Research Laboratory, Florida Department of Natural Resources, St. Petersburg, FL.
- Gallaway, B. J. 1981. An ecosystem analysis of oil and gas development on the Texas-Louisiana continental shelf. FWS/OBS-81/27, Washington, D.C. 89 pp.
- Galván-Magaña, F., C. Polo-Silva, S. B. Hernández-Aguilar, A. Sandoval-Londoño and others. 2013. Shark predation on cephalopods in the Mexican and Ecuadorian Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 95:52–62.
- Gannon, D. P., and D. M. Waples. 2004. Diets of coastal bottlenose dolphins from the US Mid-Atlantic coast differ by habitat. Marine Mammal Science 20(3):527–545.
- García, C. B., and C. Posada. 2014. First approach to the trophic ecology and diet of the rainbow runner, *Elagatis bipinnulata* (Quoy & Gaimard, 1825) (Pisces: Carangidae), in the central Colombian Caribbean. Acta Biológica Colombiana 19(2):309–314.
- Garrison, L. P., and J. S. Link. 2000. Diets of five hake species in the northeast United States continental shelf ecosystem. Marine Ecology Progress Series 204:243–255.
- Gartland, J., R. J. Latour, A. D. Halvorson, and H. M. Austin. 2006. Diet composition of youngof-the-year bluefish in the lower Chesapeake Bay and the coastal ocean of Virginia. Transactions of the American Fisheries Society 135(2):371–378.
- Gelsleichter, J., J. A. Musick, and S. Nichols. 1999. Food habits of the smooth dogfish, *Mustelus canis*, dusky shark, *Carcharhinus obscurus*, Atlantic sharpnose shark, *Rhizoprionodon terraenovae*, and the sand tiger, *Carcharias taurus*, from the northwest Atlantic Ocean. Environmental Biology of Fishes 54(2):205–217.
- Gibbs Jr, R. H., and B. B. Collette. 1959. On the identification, distribution, and biology of the dolphins, *Coryphaena hippurus* and *C. equiselis*. Bulletin of Marine Science 9(2):117–152.
- Gibran, F. Z. 2007. Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotropical Ichthyology 5(3):387–398.
- Gilliam, D., and K. Sullivan. 1993. Diet and feeding habits of the southern stingray *Dasyatis americana* in the central Bahamas. Bulletin of Marine Science 52(3):1007–1013.
- Gladfelter, W. B., and W. S. Johnson. 1983. Feeding niche separation in a guild of tropical reef fishes (Holocentridae). Ecology 64(3):552–563.
- Glass, K. A., and B. D. Watts. 2009. Osprey diet composition and quality in high-and low-salinity areas of lower Chesapeake Bay. Journal of Raptor Research 43(1):27–36.
- Gobert, B., A. Guillou, P. Murray, P. Berthou and others. 2005. Biology of queen snapper (*Etelis oculatus*: Lutjanidae) in the Caribbean. Fishery Bulletin 103(2):417–425.
- Gómez-Canchong, P., Manjarrés M., L. O. Duarte, and J. Altamar. 2004. Atlas pesquero del area norte del Mar Caribe de Colombia. 230 p. Universidad del Magadalena, Santa Marta, Colombia.
- González, A., A. López, A. Guerra, and A. Barreiro. 1994. Diets of marine mammals stranded on the northwestern Spanish Atlantic coast with special reference to Cephalopoda. Fisheries Research 21(1):179–191.
- Gorni, G., S. Loibel, R. Goitein, and A. Amorim. 2011. Stomach contents analysis of white marlin (*Tetrapturus albidus*) caught off southern and southeastern Brazil: a bayesian analysis. Collective Volume of Scientific Papers ICCAT 66(4):1779–1786.
- Gorni, G. R., R. Goitein, and A. F. de Amorim. 2013. Description of diet of pelagic fish in the southwestern Atlantic, Brazil. Biota Neotropica 13(1):61–69.

- Govoni, J., D. Hoss, and A. Chester. 1983. Comparative feeding of three species of larval fishes in the northern Gulf of Mexico: *Brevoortia patronus*, *Leiostomus xanthurus*, and *Micropogonias undulatus*. Marine Ecology Progress Series 13(2-3):189–199.
- Grabowski, J. H. 2002. The influence of trophic interactions, habitat complexity, and landscape setting on community dynamics and restoration of oyster reefs. Ph.D. diss., 155 p. University of North Carolina at Chapel Hill, Chapel Hill, NC.
- Granadeiro, J. P., L. R. Monteiro, and R. W. Furness. 1998. Diet and feeding ecology of Cory's shearwater *Calonectris diomedea* in the Azores, north-east Atlantic. Marine Ecology Progress Series 166:267–276.
- Grimes, C. B. 1979. Diet and feeding ecology of the vermilion snapper, *Rhomboplites aurorubens* (Cuvier) from North Carolina and South Carolina waters. Bulletin of Marine Science 29(1):53–61.
- Grover, J. J. 1993. Trophic ecology of pelagic early-juvenile Nassau grouper, *Epinephelus striatus*, during an early phase of recruitment into demersal habitats. Bulletin of Marine Science 53(3):1117–1125.
- Grover, J. J., D. B. Eggleston, and J. M. Shenker. 1998. Transition from pelagic to demersal phase in early-juvenile Nassau grouper, *Epinephelus striatus*: pigmentation, squamation, and ontogeny of diet. Bulletin of Marine Science 62(1):97–113.
- Gudger, E. W. 1929. On the morphology, coloration and behaviour of seventy teleostean fish of Tortugas, Florida. Carnegie Institute of Washington Tortugas Laboratory Publication 391 26(5):149–204.
- Guedes, A., and F. Araújo. 2008. Trophic resource partitioning among five flatfish species (Actinopterygii, Pleuronectiformes) in a tropical bay in south-eastern Brazil. Journal of Fish Biology 72(4):1035–1054.
- Guevara, E., H. Álvarez, M. Mascaró, C. Rosas, and A. Sánchez. 2007. Hábitos alimenticios y ecología trófica del pez *Lutjanus griseus* (Pisces: Lutjanidae) asociado a la vegetación sumergida en la Laguna de Términos, Campeche, México. Revista de Biología Tropical 55(3-4):989–1004.
- Gunter, G. 1942. Contributions to the natural history of the bottlenose dolphin, *Tursiops truncatus* (Montague), on the Texas coast, with particular reference to food habits. Journal of Mammalogy 23(3):267–276.
- Gunter, G. 1945. Studies on Marine Fishes of Texas. 190 p. The University of Texas, Austin, TX.
- Gurshin, C. W. D. Shark nursery grounds in Sapelo Island National Estuarine Research Reserve, Georgia. American Fisheries Society Symposium, p. 1-11. American Fisheries Society.
- Hadwen, W. L., G. L. Russell, and A. H. Arthington. 2007. Gut content-and stable isotopederived diets of four commercially and recreationally important fish species in two intermittently open estuaries. Marine and Freshwater Research 58(4):363–375.
- Hales Jr, L. S. 1987. Distribution, abundance, reproduction, food habits, and growth of round scad, *Decapterus punctatus*, in the South Atlantic Bight. Fishery Bulletin 85(2):251–268.
- Hammerschlag-Peyer, C. M., and C. A. Layman. 2012. Factors affecting resource use variation for an abundant coastal fish predator, *Lutjanus apodus*, in a Bahamian wetland system. Bulletin of Marine Science 88(2):211–230.
- Hammerschlag, N., D. Ovando, and J. E. Serafy. 2010. Seasonal diet and feeding habits of juvenile fishes foraging along a subtropical marine ecotone. Aquatic Biology 9:279–290.
- Hansen, D. J. 1969. Food, growth, migration, reproduction, and abundance of pinfish, *Lagodon rhomboides*, and Atlantic croaker, *Micropogon undulatus*, near Pensacola, Florida, 1963–65. Fishery Bulletin 68(1):135–146.

- Harrigan, P., J. Zieman, and S. Macko. 1989. The base of nutritional support for the gray snapper (*Lutjanus griseus*): an evaluation based on a combined stomach content and stable isotope analysis. Bulletin of Marine Science 44(1):65–77.
- Harrington, R. W., and E. S. Harrington. 1961. Food selection among fishes invading a high subtropical salt marsh: from onset of flooding through the progress of a mosquito brood. Ecology 42(4):646–666.
- Hassani, S., L. Antoine, and V. Ridoux. 1997. Diets of albacore, *Thunnus alalunga*, and dolphins, *Delphinus delphis* and *Stenella coerulaeoalba*, caught in the northeast Atlantic albacore drift-net fishery: a progress report. Journal of Northwest Atlantic Fishery Science 22:119–123.
- Hayse, J. W. 1987. Feeding habits, age, growth and reproduction of Atlantic spadefish, *Chaetodipterus Faber* (Pisces: Ephippidae), in South Carolina. Fishery Bulletin 88(1):67–83.
- Headley, B. M., H. Oxenford, M. Peterson, and P. Fanning. 2009. Size related variability in the summer diet of the blackfin tuna (*Thunnus atlanticus* Lesson, 1831) from Tobago, the Lesser Antilles. Journal of Applied Ichthyology 25(6):669–675.
- Heck Jr, K. L., and M. P. Weinstein. 1989. Feeding habits of juvenile reef fishes associated with Panamanian seagrass meadows. Bulletin of Marine Science 45(3):629–636.
- Henderson, A., K. Flannery, and J. Dunne. 2001. Observations on the biology and ecology of the blue shark in the North-east Atlantic. Journal of Fish Biology 58(5):1347–1358.
- Hensley, V. I., and D. A. Hensley. 1995. Fishes eaten by sooty terns and brown noddies in the Dry Tortugas, Florida. Bulletin of Marine Science 56(3):813–821.
- Hernández-García, V. 1995. The diet of the swordfish *Xiphias gladius* Linnaeus, 1758, in the central east Atlantic, with emphasis on the role of cephalopods. Fishery Bulletin 93(2):403–411.
- Hess, P. W. 1961. Food habits of two dasyatid rays in Delaware Bay. Copeia 1961(2):239-241.
- Hettler Jr, W. F. 1989. Food habits of juveniles of spotted seatrout and gray snapper in western Florida Bay. Bulletin of Marine Science 44(1):155–162.
- Heupel, M. R., and R. E. Heuter. 2002. Importance of prey density in relation to the movement patterns of juvenile blacktip sharks (*Carcharhinus limbatus*) within a coastal nursery area. Marine Freshwater Research 53:543–550.
- Hodson, R. G., J. O. Hackman, and C. R. Bennett. 1981. Food habits of young spots in nursery areas of the Cape Fear River Estuary, North Carolina. Transactions of the American Fisheries Society 110(4):495–501.
- Hoffmayer, E. R., and G. R. Parsons. 2003. Food habits of three shark species from the Mississippi Sound in the northern Gulf of Mexico. Southeastern Naturalist 2(2):271–280.
- Horn, M. H. 1970. Systematics and biology of the stromateid fishes of the genus *Peprilus*. Bulletin of the Museum of Comparative Zoology 140(5):165–261.
- Horvath, M. L., C. B. Grimes, and G. R. Huntsman. 1990. Growth, mortality, reproduction and feeding of knobbed porgy, *Calamus nodosus*, along the southeastern United States coast. Bulletin of Marine Science 46(3):677–687.
- Hourigan, T. F., F. G. Stanton, P. J. Motta, C. D. Kelley, and B. Carlson. 1989. The feeding ecology of three species of Caribbean angelfishes (family Pomacanthidae). Environmental Biology of Fishes 24(2):105–116.
- Hueter, R. E. 1994. Bycatch and catch-release mortality of small sharks in the gulf coast nursery grounds of Tampa Bay and Charlotte Harbor. Mote Marine Technical Report No. 368 (NOAA/NMFS/MARFIN Project NA17FF0378-01), 183 p.
- Huh, S.-H., and C. L. Kitting. 1985. Trophic relationships among concentrated populations of small fishes in seagrass meadows. Journal of Experimental Marine Biology and Ecology 92(1):29–43.

- Humphreys Jr, R. L. 1980. Feeding Habits of the kahala, *Seriola dumerili*, in the Hawaiian Archipelago. Proceedings of the Symposium on Status of Resource Investigations in the Northwestern Hawaiian Islands: 233-240.
- Hussey, N. E., S. F. Dudley, I. D. McCarthy, G. Cliff, and A. T. Fisk. 2011. Stable isotope profiles of large marine predators: viable indicators of trophic position, diet, and movement in sharks? Canadian Journal of Fisheries and Aquatic Sciences 68(12):2029– 2045.
- Ismen, A., C. Yıgın, and P. Ismen. 2007. Age, growth, reproductive biology and feed of the common guitarfish (*Rhinobatos rhinobatos* Linnaeus, 1758) in Iskenderun Bay, the eastern Mediterranean Sea. Fisheries Research 84(2):263–269.
- Jacobsen, I., J. Johnson, and M. Bennett. 2009. Diet and reproduction in the Australian butterfly ray *Gymnura australis* from northern and north-eastern Australia. Journal of Fish Biology 75(10):2475–2489.
- Jeffers, S. A. B. 2007. Ecology of Inshore Lizardfish, *Synodus Foetens*, in the Northern Gulf of Mexico. M.S. thesis, 101 p. University of West Florida, Pensacola, FL.
- Johnson, M. W., S. P. Powers, C. L. Hightower, and M. Kenworthy. 2010. Age, growth, mortality, and diet composition of vermilion snapper from the north-central Gulf of Mexico. Transactions of the American Fisheries Society 139(4):1136–1149.
- Jolley, J. W. J. 1977. The biology and fishery of Atlantic sailfish *Istiophorus platypterus*, from Southeast Florida. Contribution No. 2981, 31 p.
- Jud, Z. R., C. A. Layman, and J. M. Shenker. 2011. Diet of age-0 tarpon (*Megalops atlanticus*) in anthropogenically-modified and natural nursery habitats along the Indian River Lagoon, Florida. Environmental Biology of Fishes 90(3):223–233.
- Kagiwara, F., and V. Abilhôa. 2000. A alimentação do peixe-lagarto *Synodus foetens* (Linnaeus, 1766) em um banco areno-lodoso da Ilha do Mel, Paraná, Brasil. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 3(1):9–17.
- Kanou, K., M. Sano, and H. Kohno. 2004. Food habits of fishes on unvegetated tidal mudflats in Tokyo Bay, central Japan. Fisheries Science 70(6):978–987.
- Karakulak, F., A. Salman, and I. Oray. 2009. Diet composition of bluefin tuna (*Thunnus thynnus* L. 1758) in the Eastern Mediterranean Sea, Turkey. Journal of Applied Ichthyology 25(6):757–761.
- Kasprzak, R., and V. Guillory. Food habits of sand seatrout in Barataria Bay, Louisiana. Proceedings of the Annual Conference of Southeastern Fish and Wildlife Agencies 38:480–487.
- Keenan, S. F. 2002. The Importance of Zooplankton in the Diets of Blue Runner (*Caranx Crysos*) Near Offshore Petroleum Platforms in the Northern Gulf of Mexico. M.S. thesis, 166 p. Louisiana State University, Baton Rouge, LA.
- Kemp, R. J. 1950. Report on stomach analysis from June 1, 1949 through August 31, 1949.
  Texas Game and Fish Commission Laboratory Annual Report for Fiscal Year 1948-49, 101-127 p.
- Kim, J.-B., D.-Y. Moon, K. Jung-No, T. Kim, and H.-S. Jo. 1997. Diets of bigeye and yellowfin tunas in the western tropical Pacific. Korean Journal of Fisheries and Aquatic Sciences 30(5):719–729.
- King, K. A. 1989. Food habits and organochlorine contaminants in the diet of olivaceous cormorants in Galveston Bay, Texas. The Southwestern Naturalist 34(3):338–343.
- Kjelson, M. A., D. S. Peters, G. W. Thayer, and G. N. Johnson. 1975. The general feeding ecology of postlarval fishes in the Newport River estuary. Fishery Bulletin 73(1):137– 144.
- Klima, E. F. 1959. Aspects of the biology and the fishery for Spanish mackerel, *Scomberomorus maculatus* (Mitchell), of southern Florida Technical Series No 27, 39 p.

- Klima, E. F., and D. C. Tabb. 1959. A contribution to the biology of the spotted weakfish, *Cynoscion nebulosus* (Cuvier), from northwest Florida, with a description of the fishery. Technical Series 1-25 p.
- Knapp, F. T. 1950. Menhaden utilization in relation to the conservation of food and game fishes of the Texas Gulf coast. Transactions of the American Fisheries Society 79(1):137–144.
- Knapp, F. T. 1951. Food habits of the sergeantfish, *Rachycentron canadus*. Copeia 1951(1):101–102.
- Kobelkowsky, D., and A. y. M. Castillo-Rivera. 1995. Sistema digestivo y alimentación de los bagres (Pisces, Ariidae) del golfo de México. Hidrobiológica 5(1-2):95–103.
- Kobylinski, G. J., and P. F. Sheridan. 1979. Distribution, abundance, feeding and long-term fluctuations of spot, *Leiostomus xanthurus*, and croaker, *Micropogonias undulatus*, in Apalachicola Bay, Florida, 1972-1977. Contributions in Marine Science 22:149–161.
- Koenig, C., and F. Coleman. 2009. Population density, demographics, and predation effects of adult goliath grouper. Project NA05NMF4540045 (FSU Project No. 016604), 80 p.
- Kramer, A., J. L. Van Tassell, and R. A. Patzner. 2009. Dentition, diet and behaviour of six gobiid species (Gobiidae) in the Caribbean Sea. Cybium 33(2):107–121.
- Kubetzki, U., and S. Garthe. 2003. Distribution, diet and habitat selection by four sympatrically breeding gull species in the south-eastern North Sea. Marine Biology 143(1):199–207.
- Kubodera, T., H. Watanabe, and T. Ichii. 2007. Feeding habits of the blue shark, *Prionace glauca*, and salmon shark, *Lamna ditropis*, in the transition region of the Western North Pacific. Reviews in Fish Biology and Fisheries 17(2-3):111–124.

Kubota, T., and T. Uyeno. 1970. Food habits of lancetfish *Alepisaurus ferox* (order Myctophiformes) in Suruga Bay, Japan. Japanese Journal of Ichthyology 17(1):22–28.

- Kulbicki, M., Y.-M. Bozec, P. Labrosse, Y. Letourneur, G. Mou-Tham, and L. Wantiez. 2005. Diet composition of carnivorous fishes from coral reef lagoons of New Caledonia. Aquatic Living Resources 18(03):231–250.
- Labropoulou, M., A. Machias, and N. Tsimenides. 1999. Habitat selection and diet of juvenile red porgy, *Pagrus pagrus* (Linnaeus, 1758). Fishery Bulletin 97(3):495–507.
- Langton, R. W., and R. E. Bowman. 1980. Food of fifteen northwest Atlantic gadiform fishes. NOAA Technical Memorandum NMFS SSRF-740, 23 p.
- Lansdell, M., and J. Young. 2007. Pelagic cephalopods from eastern Australia: species composition, horizontal and vertical distribution determined from the diets of pelagic fishes. Reviews in Fish Biology and Fisheries 17(2-3):125–138.
- Larson, E. T., and A. L. Shanks. 1996. Consumption of marine snow by two species of juvenile mullet and its contribution to their growth. Marine Ecology Progress Series 130(1):19–28.
- Layman, C. A., and B. R. Silliman. 2002. Preliminary survey and diet analysis of juvenile fishes of an estuarine creek on Andros Island, Bahamas. Bulletin of Marine Science 70(1):199– 210.
- Leatherwood, S. 1975. Some observations of feeding behavior of bottle-nosed dolphins (*Tursiops truncatus*) in the northern Gulf of Mexico and (*Tursiops* cf. *T. gilli*) off southern California, Baja California, and Nayarit, Mexico. Marine Fisheries Review 37(9):10–16.
- Leatherwood, S., M. W. Deerman, and C. V. Potter. 1978. Food and reproductive status of nine *Tursiops truncatus* from the Northeastern United States coast. Cetology 28:1–6.
- León, Y. M., and K. A. Bjorndal. 2002. Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Marine Ecology Progress Series 245:249–258.
- Lessa, R. P., and Z. Almeida. 1998. Feeding habits of the bonnethead shark, *Sphyrna tiburo*, from Northern Brazil. Cybium 22(4):383–394.
- Lewis, J. B., and F. Axelsen. 1967. Food of the dolphin, *Coryphaena hippurus* Linnaeus, and of the yellowfin tuna, *Thunnus albacares* (Lowe), from Barbados, West Indies. Journal of the Fisheries Board of Canada 24(3):683–686.

- Lewis, J. B., J. Brundritt, and A. Fish. 1962. The biology of the flyingfish *Hirundichthys affinis* (Günther). Bulletin of Marine Science 12(1):73–94.
- Ley, J. A., C. L. Montague, and C. C. McIvor. 1994. Food habits of mangrove fishes: a comparison along estuarine gradients in northeastern Florida Bay. Bulletin of Marine Science 54(3):881–899.
- Lindberg, W., D. M. Mason, and D. Murie. 2002. Habitat-mediated predator-prey interactions: implications for sustainable production of gag grouper in the eastern Gulf of Mexico. Final Report to Florida Sea Grant, R/LR-B-49, 55 p.
- Lindquist, D., L. Cahoon, I. Clavijo, M. Posey and others. 1994. Reef fish stomach contents and prey abundance on reef and sand substrata associated with adjacent artificial and natural reefs in Onslow Bay, North Carolina. Bulletin of Marine Science 55(2-3):308–318.
- Liordos, V., and V. Goutner. 2007. Spatial patterns of winter diet of the Great Cormorant in coastal wetlands of Greece. Waterbirds 30(1):103–111.
- Lipskaya, N. Y. 1980. The feeding and food requirements of the young of the smallwing flyingfish, *Oxyporhamphus micropterus* (Hemirhamphidae). Journal of Ichthyology 20(4):72–79.
- Logan, J. M., E. Rodríguez-Marín, N. Goñi, S. Barreiro and others. 2011. Diet of young Atlantic bluefin tuna (*Thunnus thynnus*) in eastern and western Atlantic foraging grounds. Marine Biology 158(1):73–85.
- Logan, J. M., R. Toppin, S. Smith, B. Galuardi, J. Porter, and M. Lutcavage. 2013. Contribution of cephalopod prey to the diet of large pelagic fish predators in the central North Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 95:74–82.
- Longley, W., and S. Hildebrand. 1941. Systematic catalogue of the fishes of Tortugas, Florida. Papers Tortugas Lab. 34 (Publ. Carn. Inst. 535), 1-311 p.
- López-Peralta, R., and C. Arcila. 2002. Diet composition of fish species from the southern continental shelf of Colombia. Naga, WorldFish Center Quarterly 25(3-4):23–29.
- Lopez, S., R. Meléndez, and P. Barría. 2010. Preliminary diet analysis of the blue shark *Prionace glauca* in the eastern South Pacific. Revista de Biología Marina y Oceanografía 45(S1):745–749.
- Lowe, C. G., B. M. Wetherbee, G. L. Crow, and A. L. Tester. 1996. Ontogenetic dietary shifts and feeding behavior of the tiger shark, *Galeocerdo cuvier*, in Hawaiian waters. Environmental Biology of Fishes 47(2):203–211.
- Luczkovich, J. J., G. P. Ward, J. C. Johnson, R. R. Christian and others. 2002. Determining the trophic guilds of fishes and macroinvertebrates in a seagrass food web. Estuaries 25(6):1143–1163.
- Lugendo, B., I. Nagelkerken, G. Van Der Velde, and Y. Mgaya. 2006. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. Journal of Fish Biology 69(6):1639–1661.
- Lyons, D. E., D. D. Roby, and K. Collis. 2005. Foraging ecology of Caspian terns in the Columbia River estuary, USA. Waterbirds 28(3):280–291.
- Maia, A., N. Queiroz, J. P. Correia, and H. Cabral. 2006. Food habits of the shortfin mako, *Isurus oxyrinchus*, off the southwest coast of Portugal. Environmental Biology of Fishes 77(2):157–167.
- Makowski, C., J. A. Seminoff, and M. Salmon. 2006. Home range and habitat use of juvenile Atlantic green turtles (*Chelonia mydas* L.) on shallow reef habitats in Palm Beach, Florida, USA. Marine Biology 148(5):1167–1179.
- Maldeniya, R. 1996. Food consumption of yellowfin tuna, *Thunnus albacares*, in Sri Lankan waters. Environmental Biology of Fishes 47(1):101–107.

- Malone, M. A., K. Buck, G. Moreno, and G. Sancho. 2011. Diet of three large pelagic fishes associated with drifting fish aggregating devices (DFADs) in the western equatorial Indian Ocean. Animal Biodiversity and Conservation 34(2):287–294.
- Manooch, C., and M. Haimovici. 1983. Foods of greater amberjack, Seriola dumerili, and almaco jack, *Seriola rivoliana* (Pisces: Carangidae), from the south Atlantic Bight. The Journal of the Elisha Mitchell Scientific Society 99(1):1–9.
- Manooch, C. I., D. Mason, and R. Nelson. 1985. Foods of little tunny *Euthynnus alletteratus* collected along the southeastern and Gulf coasts of the United States. Bulletin of the Japanese Society of Scientific Fisheries 51(8):1207–1218.
- Manooch III, C. S., and W. T. Hogarth. 1983. Stomach contents and giant trematodes from wahoo, *Acanthocybium solanderi*, collected along the South Atlantic and Gulf coasts of the United States. Bulletin of Marine Science 33(2):227–238.
- Manooch III, C. S., D. L. Mason, and R. S. Nelson. 1983. Food and gastrointestinal parasited of dolphin, *Coryphaena hippurus*, collected along the southeastern and gulf coasts of the United States. NOAA Technical Memorandum NMFS-SEFC-124, 36 p.
- Manooch III, S., and D. Mason. 1983. Comparative food studies of yellowfin in tuna, *Thunnus albacares*, and blackfin tuna, *Thunnus atlanticus*,(Pisces: Scombridae) from the southeastern and Gulf Coast of the United States. Acta Ichthyologica et Piscatoria 8(2):25–46.
- Mansueti, R. 1963. Symbiotic behavior between small fishes and jellyfishes, with new data on that between the stromateid, *Peprilus alepidotus*, and the scyphomedusa, *Chrysaora quinquecirrha*. Copeia 1963(1):40–80.
- Mariano-Jelicich, R., M. Favero, and M. P. Silva. 2003. Fish prey of the Black Skimmer (*Rynchops niger*) at Mar Chiquita, Buenos Aires Province, Argentina. Marine Ornithology 31:199–202.
- Mariano-Jelicich, R., E. Madrid, and M. Favero. 2007. Sexual dimorphism and diet segregation in the Black Skimmer *Rynchops niger*. Ardea 95(1):115–124.
- Markaida, U., and F. Hochberg. 2005. Cephalopods in the Diet of Swordfish (*Xiphias gladius*) Caught off the West Coast of Baja California, Mexico. Pacific Science 59(1):25–41.
- Markaida, U., and O. Sosa-Nishizaki. 2010. Food and feeding habits of the blue shark *Prionace glauca* caught off Ensenada, Baja California, Mexico, with a review on its feeding. Journal of the Marine Biological Association of the United Kingdom 90(05):977–994.
- Markham, A. C., and B. D. Watts. 2008. The influence of salinity on provisioning rates and nestling growth in bald eagles in the lower Chesapeake Bay. The Condor 110(1):183–187.
- Martins, A. S., M. Haimovici, and R. Palacios. 2005. Diet and feeding of the cutlassfish *Trichiurus lepturus* in the Subtropical Convergence Ecosystem of southern Brazil. Journal of the Marine Biological Association of the United Kingdom 85(05):1223–1229.
- Massutí, E., S. Deudero, P. Sánchez, and B. Morales-Nin. 1998. Diet and feeding of dolphin (*Coryphaena hippurus*) in western Mediterranean waters. Bulletin of Marine Science 63(2):329–341.
- Matallanas, J., M. Casadevall, M. Carrasson, J. Bolx, and V. Fernandez. 1995. The food of *Seriola dumerili* (pisces: Carangidae) in the Catalan sea (western Mediterranean). Journal of the Marine Biological Association of the United Kingdom 75(01):257–260.
- Mather III, F., H. Clark, and J. Mason Jr. 1975. Synopsis of the biology of the white marlin *Tetrapturus albidus* Poey (1861). *In*: Proceedings of the International Billfish Symposium Kailua-Kona, Hawaii, 9-12 August 1972 Part 3 Species Synopses (Shomura, R. S., and F. Williams, eds.), p 55-94. National Marine Fisheries Service, Seattle, WA.
- Matheson III, R. H., G. R. Huntsman, and C. S. Manooch III. 1986. Age, growth, mortality, food and reproduction of the scamp, *Mycteroperca phenax*, collected off North Carolina and South Carolina. Bulletin of Marine Science 38(2):300–312.

- Matlock, G. C., and M. A. Garcia. 1983. Stomach contents of selected fishes from Texas bays. Contributions in Marine Science 26:95–110.
- McCabe, E. J. B., D. P. Gannon, N. B. Barros, and R. S. Wells. 2010. Prey selection by resident common bottlenose dolphins (*Tursiops truncatus*) in Sarasota Bay, Florida. Marine Biology 157(5):931–942.
- McCallister, M. P. 2012. Abundance, Distribution, and Habitat Use of Sharks in Two Northeast Florida Estuaries. M.S. thesis, 90 p. University of North Florida, Jacksonville, FL.
- McCawley, J., J. Cowan Jr, and R. Shipp. 2006. Feeding Periodicity and Prey Habitat Preference of Red Snapper, *Lutjanus campechanus* (Poey, 1860), on Alabama Artificial Reefs. Gulf of Mexico Science 24(1/2):14–27.
- McCawley, J. R., and J. Cowan. 2007. Seasonal and size specific diet and prey demand of red snapper on Alabama artificial reefs. American Fisheries Society Symposium, p. 71–96.
- McCawley, J. R., J. H. Cowan Jr, and R. L. Shipp. Red snapper (*Lutjanus campechanus*) diet in the north-central Gulf of Mexico on Alabama artificial reefs. Proceedings of the 54th Gulf and Caribbean Fisheries Institute, 372-385 p.
- McElroy, W. D. 2009. Diet, feeding ecology, trophic relationships, morphometric condition, and ontogeny for the sandbar shark, *Carcharhinus plumbeus*, and smooth dogfish, *Mustelus canis*, within the Delaware Bay Estuary. Ph.D. diss., 248 p. University of Rhode Island, Kingston, RI.
- McElroy, W. D., B. M. Wetherbee, C. S. Mostello, C. G. Lowe, G. L. Crow, and R. C. Wass. 2006. Food habits and ontogenetic changes in the diet of the sandbar shark, *Carcharhinus plumbeus*, in Hawaii. Environmental Biology of Fishes 76(1):81–92.
- McEwan, L. C., and D. H. Hirth. 1980. Food habits of the bald eagle in north-central Florida. Condor 82(2):229–231.
- McLean, P. K., and M. A. Byrd. 1991. Feeding ecology of Chesapeake Bay Ospreys and growth and behavior of their young. The Wilson Bulletin:105–111.
- McMichael Jr, R. H. 1981. Utilization of the surf zone of a northern Gulf coastal barrier island by the Menticirrhus complex (Pisces: Sciaenidae). M.S. thesis, 86 p. University of Southern Mississippi, Hattiesburg, MS.
- Mead, J. G., and C. W. Potter. 1990. Natural history of bottlenose dolphins along the central Atlantic coast of the United States. *In*: The bottlenose dolphin (Leatherwood, S., and R. R. Reeves, eds.), p 165-195. Academic Press, Inc., San Diego, CA.
- Medved, R., C. Stillwell, and J. Casey. 1985. Stomach contents of young sandbar sharks, *Carcharhinus plumbeus*, in Chincoteague Bay, Virginia. Fishery Bulletin 83(3):395–402.
- Melo, C., R. Santos, M. Bassoi, A. Araújo and others. 2010. Feeding habits of delphinids (Mammalia: Cetacea) from Rio de Janeiro state, Brazil. Journal of the Marine Biological Association of the United Kingdom 90(08):1509–1515.
- Mena-Loria, A., E. Pérez-Díaz, X. Renan, and T. Brule. Hábitos Alimenticios de los juveniles de Cuna Aguají, (*Mycteroperca microlepis*) (Pisces: Serranidae) en el Suroeste del Golfo de México. Proceedings of the 59th Gulf and Caribbean Fisheries Institute, p. 219–226.
- Mendizabal, M. G. 2013. The reproductive biology, condition and feeding ecology of the skipjack, *Katsuwonus pelamis*, in the Western Indian Ocean. Ph.D. diss., 234 p. Universidad del Pais Vasco, Leioa, Spain.
- Mendoza-Carranza, M. 2003. The feeding habits of gafftopsail catfish *Bagre marinus* (Ariidae) in Paraiso Coast, Tabasco, Mexico. Hidrobiológica 13(2):119–126.
- Menezes, M. F. 1969. Alimentação da cavala, *Scomberomorus cavalla* (Cuvier), em águas costeiras do Estado do Ceará. Arquivos de Ciências do Mar 9(1):15–20.
- Menzel, D. W. 1960. Utilization of food by a Bermuda reef fish, *Epinephelus guttatus*. ICES Journal of Marine Science 25(2):216–222.
- Mericas, D. 1981. Feeding habits of the Atlantic cutlassfish, *Trichiurus lepturus*, in the Gulf of Mexico. Northeast Gulf Science 4:137–140.

- Mersmann, T. J., D. A. Buehler, J. D. Fraser, and J. K. Seegar. 1992. Assessing bias in studies of bald eagle food habits. The Journal of Wildlife Management 56(1):73–78.
- Meyer, G., and J. Franks. 1996. Food of cobia, *Rachycentron canadum*, from the northcentral Gulf of Mexico. Gulf Research Reports 9(3):161–167.
- Mickle, P. F., J. F. Schaefer, D. A. Yee, and S. B. Adams. 2013. Diet of juvenile Alabama shad (*Alosa alabamae*) in two northern Gulf of Mexico drainages. Southeastern Naturalist 12(1):233–237.
- Miles, D. W. 1949. A study of the food habits of the fishes of the Aransas Bay area. M.S. thesis, 70 p. University of Houston, Houston, TX.
- Minello, T. J., R. J. Zimmerman, T. E. Czapla, and S. F. Center. 1989. Habitat-related differences in diets of small fishes in Lavaca Bay, Texas, 1985-1986. NOAA Technical Memorandum SEFC-NMFS-23, 616 p.
- Modou, S., C. Mouhameth, and K. Tinkoudgou. 2014. Seasonal feeding variation of the yellow mule (*Mugil cephalus*, Linnaeus 1758, Mugilidae) in Senegal River estuary fishery. International Journal of Agricultural Policy and Research 2(4):125–131.
- Moe, M. A. 1969. Biology of the red grouper *Epinephelus morio* (Valenciennes) from the eastern Gulf of Mexico. Professional Paper Series No. 10, 95 p.
- Moffett, A., L. McEachron, J. Key, and J. Thorpe. 1979. Observations on the biology of sand seatrout (*Cynoscion arenarius*) in Galveston and Trinity Bays, Texas. Contributions in Marine Science 22:163–172.
- Monteiro, D. P., T. Giarrizzo, and V. Isaac. 2009. Feeding ecology of juvenile dog snapper *Lutjanus jocu* (Bloch and Shneider, 1801) (Lutjanidae) in intertidal mangrove creeks in Curuçá Estuary (Northern Brazil). Brazilian Archives of Biology and Technology 52(6):1421–1430.
- Morato, T., E. Solà, M. P. Grós, and G. M. Menezes. 1999. Diets of forkbeard (*Phycis phycis*) and conger eel (*Conger conger*) off the Azores during spring of 1996 and 1997. Arquipelago Life and Marine Sciences 17A:51–64.
- Moreira, F. 1990. Food of the swordfish, *Xiphias gladius* Linnaeus, 1758, off the Portuguese coast. Journal of Fish Biology 36(4):623–624.
- Moseley, C. 2010. Comparing body condition and foraging ecology of two populations of Cape gannets on Bird and Malgas Islands. M.S. thesis, 56 p. University of Cape Town, Rondebosch, South Africa.
- Moseley, F. N. 1966. Biology of the red snapper, *Lutjanus aya* Bloch, of the northwestern Gulf of Mexico. Publications of the Institute of Marine Science, University of Texas 10:90–101.
- Moteki, M., M. Arai, K. Tsuchiya, and H. Okamoto. 2001. Composition of piscine prey in the diet of large pelagic fish in the eastern tropical Pacific Ocean. Fisheries Science 67(6):1063–1074.
- Motta, P. J., K. B. Clifton, P. Hernandez, B. T. Eggold, S. D. Giordano, and R. Wilcox. 1995. Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bulletin of Marine Science 56(1):185–200.
- Mullaney Jr, M. D. Ontogenetic shifts in diet of gag, Mycteroperca microlepis,(Goode and Bean),(Pisces: Serranidae). Proceedings of the Gulf and Caribbean Fisheries Institutde, p. 432-445.
- Mullaney Jr, M. D., and L. D. Gale. 1996. Ecomorphological relationships in ontogeny: anatomy and diet in gag, *Mycteroperca microlepis* (Pisces: Serranidae). Copeia 1996(1):167–180.
- Nagelkerken, I., M. Dorenbosch, W. Verberk, E. Cocheret De La Morinière, and G. Van Der Velde. 2000. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology Progress Series 194:55–64.

- Nagelkerken, I., G. v. d. Velde, W. C. Verberk, and M. Dorenbosch. 2006. Segregation along multiple resource axes in a tropical seagrass fish community. Marine Ecology Progress Series 308:79–89.
- Naughton, S., and C. Saloman. 1981. Stomach contents of juveniles of king mackerel (*Scomberomorus cavalla*) and Spanish mackerel (*S. maculatus*). Northeast Gulf Science 5(1):71–74.
- Naughton, S. P., and C. H. Saloman. 1984. Food of bluefish (*Pomatomus saltatrix*) from the US south Atlantic and Gulf of Mexico. NOAA Technical Memorandum NMFS-SEFC-150, 37 p.
- Naughton, S. P., and C. H. Saloman. 1985. Food of gag (*Mycteroperca microlepsis*) from North Carolina and three areas of Florida. NOAA Technical Memorandum NMFS-SEFC-160, 36 p.
- Nelson, R. S. 1988. A study of the life history, ecology, and population dynamics of four sympatric reef predators (*Rhomboplites aurorubens, Lutjanus campechanus*, Lutjanidae; *Haemulon melanurum*, Haemulidae; and *Pagrus pagrus*, Sparidae) on the East and West Flower Garden Banks, northwestern Gulf of Mexico. Ph.D. diss., 197 p. North Carolina State University, Raleigh, NC.
- Neudecker, S. K. 1982. Ecological relationships of chaetodontid and pomacanthid fishes at St. Croix. Ph.D. diss., 27 p. University of California, Davis, Davis, CA.
- Newman, S. P., R. D. Handy, and S. H. Gruber. 2010. Diet and prey preference of juvenile lemon sharks *Negaprion brevirostris*. Marine Ecology Progress Series 398:221–234.
- Newton, D. C. 2007. Juvenile red snapper density, diet, and growth among four nursery habitats in the northcentral Gulf of Mexico. M.S. thesis, 91 p. University of South Alabama, Mobile, AL.
- Odum, W. E. 1970. Pathways of energy flow in a south Florida estuary. Ph.D. diss., 162 p. University of Miami, Coral Gables, FL.
- Odum, W. E. 1971. Pathways of energy flow in a south Florida estuary. Sea Grant Technical Bulletin No. 7, 162 p.
- Odum, W. E., and E. J. Heald. 1972. Trophic analyses of an estuarine mangrove community. Bulletin of Marine Science 22(3):671–738.
- Ofelt, C. H. 1975. Food habits of nesting Bald Eagles in southeast Alaska. Condor 77:337–338.
- Olson, R. J., and C. H. Boggs. 1986. Apex predation by yellowfin tuna (*Thunnus albacares*): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Canadian Journal of Fisheries and Aquatic Sciences 43(9):1760–1775.
- Olson, R. J., L. M. Duffy, P. M. Kuhnert, F. Galván-Magaña, N. Bocanegra-Castillo, and V. Alatorre-Ramírez. 2014. Decadal diet shift in yellowfin tuna *Thunnus albacares* suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Marine Ecology Progress Series 497:157–178.
- Orsi Relini, L., F. Garibaldi, C. Cima, and G. Palandri. 1995. Feeding of the swordfish, the bluefin and other pelagic nekton in the western Ligurian Sea. Collective Volume of Scientific Papers ICCAT 44(1):283–286.
- Ouzts, A. C., and S. T. Szedlmayer. 2003. Diel feeding patterns of red snapper on artificial reefs in the north-central Gulf of Mexico. Transactions of the American Fisheries Society 132(6):1186–1193.
- Ovchinnikov, V. V. e. 1971. Swordfishes and billfishes in the Atlantic Ocean: ecology and functional morphology. Israel Program for Scientific Translations;[available from the US Department of Commerce, National Technical Information Service, Springfield, Va.]
- Overstreet, R. M., and R. W. Heard. 1978a. Food of the Atlantic croaker, *Micropogonias undulatus*, from Mississippi Sound and the Gulf of Mexico. Gulf Research Reports 6(2):145–152.

- Overstreet, R. M., and R. W. Heard. 1978b. Food of the red drum, *Sciaenops ocellata*, from Mississippi Sound. Gulf Research Reports 6(2):131–136.
- Overstreet, R. M., and R. W. Heard. 1982. Food content of six commercial fishes from Mississippi Sound. Gulf Research Reports 7(2):137–149.
- Oviatt, C. A., and P. M. Kremer. 1977. Predation on the ctenophore, *Mnemiopsis leidyi*, by butterfish, *Peprilus triacanthus*, in Narragansett Bay, Rhode Island. Chesapeake Science 18(2):236–240.
- Oxenford, H. A., and W. Hunte. 1999. Feeding habits of the dolphinfish (*Coryphaena hippurus*) in the eastern Caribbean. Scientia Marina 63(3-4):303–315.
- Palmer, R. S. 1962. Handbook of North American birds, Vol. 1. 280 pp. Yale University Press, New Haven, CT.
- Papaconstantinou, C., and E. Caragitsou. 1989. Feeding interaction between two sympatric species *Pagrus pagrus* and *Phycis phycis* around Kastellorizo Island (Dodecanese, Greece). Fisheries Research 7(4):329–342.
- Papastamatiou, Y. P., B. M. Wetherbee, C. G. Lowe, and G. L. Crow. 2006. Distribution and diet of four species of carcharhinid shark in the Hawaiian Islands: evidence for resource partitioning and competitive exclusion. Marine Ecology Progress Series 320:239–251.
- Parker, D. M., W. J. Cooke, and G. H. Balazs. 2005. Diet of oceanic loggerhead sea turtles (*Caretta caretta*) in the central North Pacific. Fishery Bulletin 103(1):142–152.
- Pate, S. M., and W. E. McFee. 2012. Prey species of bottlenose dolphins (*Tursiops truncatus*) from South Carolina waters. Southeastern Naturalist 11(1):1–22.
- Patokina, F., and F. Litvinov. 2005. Food composition and distribution of elasmobranches on the shelf and upper slope of the Eastern Central Atlantic. ICES CM 2005/N:26, 22 p.
- Patterson III, W. F., J. H. Tarnecki, and J. T. Neese. 2012. Examination of red snapper fisheries ecology on the Northwest Florida Shelf (FWC-08304): final report. SEDAR31-RD27, 37 p.
- Pedrocchi, V., D. Oro, and J. González-Solís. 1996. Differences between diet of adult and chick Audouin's Gulls *Larus audouinii* at the Chafarinas Islands, SW Mediterranean. Ornis Fennica 73(3):124–130.
- Peebles, E., and T. Hopkins. 1993. Feeding habits of eight fish species from Tampa Bay, with observations on opportunistic predation. Report prepared by the University of South Florida Department of Marine Science for the Florida Marine Research Institute, Florida Department of Environmental Protection, St. Petersburg, Florida.
- Peláez-Rodríguez, E., J. Franco-López, W. A. Matamoros, R. Chavez-López, and N. J. Brown-Peterson. 2005. Trophic relationships of demersal fishes in the shrimping zone off Alvarado Lagoon, Veracruz, Mexico. Gulf and Caribbean Research 17:157–167.
- Pérez-Díaz, E., T. Colás-Marrufo, J. Sámano-Zapata, and T. Brulé. Aspectos sobre los hábitos alimenticios del pargo del golfo Lutjanus campechanus (P 1860) del banco de Campeche, Yucatán, México. Proceedings of the 58th Gulf and Caribbean Fisheries Institute, p. 754-779.
- Perschbacher, P. W., and K. Strawn. 1986. Feeding selectivity and standing stocks of *Fundulus grandis* in an artificial brackishwater pond, with comments on *Cyprinodon variegatus*. Contributions in Marine Science 29:103–111.
- Peters, K. M., and R. H. McMichael Jr. 1990. Early life history of the black drum *Pogonias cromis* (Pisces: Sciaenidae) in Tampa Bay, Florida. Northeast Gulf Science 11(1):39–58.
- Pethiyagoda, P. D. R. S. 2006. Size, food and age of commercially exploited *Trichiurus lepturus* linnaeus caught off negombo and beruwala, in sri lanka. Vidyodaya Journal of Science 13:83–93.
- Pike, L. A., and D. G. Lindquist. 1994. Feeding ecology of spottail pinfish (*Diplodus holbrooki*) from an artificial and natural reef in Onslow Bay, North Carolina. Bulletin of Marine Science 55(2-3):363–374.

- Pimenta, E., F. Marques, G. Lima, and A. Amorim. 2001. Marlin project: tag-and-release, biometrics and stomach content of billfish in Cabo Frio City, Rio de Janeiro, Brazil. Collective Volume of Scientific Papers ICCAT 53:371–375.
- Pimentel, C., and J.-C. Joyeux. 2010. Diet and food partitioning between juveniles of mutton *Lutjanus analis*, dog *Lutjanus jocu* and lane *Lutjanus synagris* snappers (Perciformes: Lutjanidae) in a mangrove-fringed estuarine environment. Journal of Fish Biology 76(10):2299–2317.
- Pinheiro, P., T. Vaske Jr, F. H. V. Hazin, P. E. Travassos, M. T. Tolotti, and T. M. Barbosa.
  2010. Diet of the white marlin (*Tetrapturus albidus*) from the southwestern equatorial Atlantic Ocean. Collective Volume of Scientific Papers ICCAT 65(5):1843-1850.
- Pinkas, L. 1971. Bluefin tuna food habits. Fishery Bulletin 152:5–10.
- Pitts, P. A. 1991. Comparative use of food and space by three Bahamian butterflyfishes. Bulletin of Marine Science 48(3):749–756.
- Platell, M., P. Orr, and I. Potter. 2006. Inter- and intraspecific partitioning of food resources by six large and abundant fish species in a seasonally open estuary. Journal of Fish Biology 69(1):243–262.
- Pleizier, N. K., S. E. Campana, R. J. Schallert, S. G. Wilson, and B. A. Block. 2012. Atlantic Bluefin Tuna (*Thunnus thynnus*) Diet in the Gulf of St. Lawrence and on the Eastern Scotian Shelf. Journal of Northwest Atlantic Fishery Science 44:67–76.
- Plotkin, P., M. Wicksten, and A. Amos. 1993. Feeding ecology of the loggerhead sea turtle *Caretta caretta* in the Northwestern Gulf of Mexico. Marine Biology 115(1):1–5.
- Portsev, P. 1980. The feeding of the cutlassfish, *Trichiurus lepturus* (Trichiuridae), off the west coast of India. Journal of Ichthyology 20(5):60–65.
- Potier, M., F. Marsac, Y. Cherel, V. Lucas and others. 2007a. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fisheries Research 83(1):60–72.
- Potier, M., F. Marsac, V. Lucas, R. Sabatié, J. Hallier, and F. Ménard. 2004. Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (*Thunnus albacares*) and bigeye (*T. obesus*) in the western tropical Indian Ocean. Western Indian Ocean Journal of Marine Science 3(1):51–62.
- Potier, M., F. Menard, Y. Cherel, A. Lorrain, R. Sabatié, and F. Marsac. 2007b. Role of pelagic crustaceans in the diet of the longnose lancetfish *Alepisaurus ferox* in the Seychelles waters. African Journal of Marine Science 29(1):113–122.
- Powell, A. B., and F. J. Schwartz. 1979. Food of *Paralichthys dentatus* and *P. lethostigma* (Pisces: Bothidae) in North Carolina estuaries. Estuaries 2(4):276–279.
- Prado, P., and K. Heck. 2011. Seagrass selection by omnivorous and herbivorous consumers: determining factors. Marine Ecology Progress Series 429:45–55.
- Preti, A., S. Kohin, H. Dewar, and D. Ramon. 2008. Feeding habits of the bigeye thresher shark (*Alopias superciliosus*) sampled from the California-based drift gillnet fishery. California Cooperative Oceanic Fisheries Investigations Report 49: 202–211.
- Preti, A., S. E. Smith, and D. Ramon. 2001. Feeding habits of the common thresher shark (*Alopias vulpinus*) sampled from the California-based drift gill net fishery, 1998-1999. California Cooperative Oceanic Fisheries Investigations Report 42:145–152.
- Preti, A., C. U. Soykan, H. Dewar, R. D. Wells, N. Spear, and S. Kohin. 2012. Comparative feeding ecology of shortfin mako, blue and thresher sharks in the California Current. Environmental Biology of Fishes 95(1):127–146.
- Rail, J.-F., and G. Chapdelaine. 1998. Food of double-crested cormorants, *Phalacrocorax auritus*, in the Gulf and Estuary of the St. Lawrence River, Quebec, Canada. Canadian Journal of Zoology 76(4):635–643.

- Ramírez-Luna, V., A. F. Navia, and E. A. Rubio. 2008. Food habits and feeding ecology of an estuarine fish assemblage of northern Pacific Coast of Ecuador. Pan-American Journal of Aquatic Sciences 3(3):361–372.
- Randall, J. Food habits of the Nassau grouper (*Epinephelus striatus*). Association of Island Marine Laboratories of the Caribbean, 6th Meeting, 13–16.
- Randall, J. E. 1965. Grazing effect on sea grasses by herbivorous reef fishes in the West Indies. Ecology 46(3):255–260.
- Randall, J. E. 1967. Food habits of reef fishes of the West Indies. Institute of Marine Sciences, University of Miami, FL.
- Rawlins, M., H. A. Oxenford, and P. Fanning. 2007. Preliminary investigation of the diets of large oceanic pelagic species of importance to the longline fishery in Barbados. 58th Gulf and Caribbean Fisheries Institute 58:243–249.
- Reichert, M. J. 2003. Diet, consumption, and growth of juvenile fringed flounder (*Etropus crossotus*); a test of the 'maximum growth/optimum food hypothesis' in a subtropical nursery area. Journal of Sea Research 50(2003):97–116.
- Reid Jr, G. K. 1954. An ecological study of the Gulf of Mexico fishes, in the vicinity of Cedar Key, Florida. Bulletin of Marine Science 4(1):1–12.
- Retfalvi, L. 1970. Food of nesting bald eagles on San Juan Island, Washington. Condor 72(3):358–361.
- Rickards, W. L. 1968. Ecology and growth of juvenile tarpon, *Megalops atlanticus*, in a Georgia salt marsh. Bulletin of Marine Science 18(1):220–239.
- Rincón-Sandoval, L. A., T. Brulé, J. L. Montero-Muñoz, and E. Pérez-Díaz. Dieta de la rabirrubia *Ocyurus chrysurus* (Lutjanidae: Lutjaninae) y su variación temporal en la costa de Yucatán, México. Proceedings of the 62nd Gulf and Caribbean Fisheries Institute, p. 207–218.
- Rivera-Arriaga, E., A. Lara-Domínguez, P. Sánchez, and A. Yáñez-Arancibia. 1995. Trophodynamic Ecology of *Polydactylus octonemus* (Atlantic thread fin) and *Lutjanus synagris* (Lane snapper) in Terminos lagoons inlets, Campeche sound: estuarine-shelf interactions. Revista de la Sociedad Mexicana de Historia Natural 46:137–152.
- Robertson, I. 1974. The food of nesting double-crested and pelagic cormorants at Mandarte Island, British Columbia, with notes on feeding ecology. Condor:346–348.
- Robins, C. R., and W. A. Starck. 1961. Materials for a revision of Serranus and related fish genera. Proceedings of the Academy of Natural Sciences of Philadelphia 113(11):259–314.
- Rock, J. E. 2009. Summer Feeding Ecology of Juvenile Common Snook in Southwest Florida Tidal Creeks. M.S. thesis, 79 p. University of Florida, Gainesville, FL.
- Rodriguez Pino, Z. 1962. Estudios estadisticos y biologicos sobra la biajaiba (*Luriamus synagris*). 1–89 pp.
- Roger, C. 1994. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton in the tropical western Indian Ocean. Fisheries Oceanography 3(2):133–141.
- Rogers, P. J., C. Huveneers, B. Page, D. J. Hamer and others. 2012. A quantitative comparison of the diets of sympatric pelagic sharks in gulf and shelf ecosystems off southern Australia. ICES Journal of Marine Science 69(8):1382–1393.
- Rogillio, H. E. 1975. An estuarine sportfish study in southeastern Louisiana. Fisheries Bulletin Number 14, New Orleans, LA.
- Rohit, P., and S. U. Bhat. 2012. Fishery and diet composition of the cobia *Rachycentron canadum* (Linnaeus, 1766) exploited along Karnataka coast. Indian Journal of Fisheries 59(4):61–65.
- Rohit, P., G. S. Rao, and K. Rammohan. 2010. Feeding strategies and diet composition of yellowfin tuna *Thunnus albacares* (Bonnaterre, 1788) caught along Andhra Pradesh, east coast of India. Indian Journal of Fisheries 57(4):13–19.

- Rohr, B. A., and E. J. Gutherz. 1977. Biology of offshore hake, *Merluccius albidus*, in the Gulf of Mexico. Fishery Bulletin 75(1):147–158.
- Romeo, T., P. Consoli, L. Castriota, and F. Andaloro. 2009. An evaluation of resource partitioning between two billfish, *Tetrapturus belone* and *Xiphias gladius*, in the central Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 89(04):849–857.
- Rosas-Alayola, J., A. n. Hernández-Herrera, F. Galvan-Magaña, L. A. Abitia-Cárdenas, and A.
  F. Muhlia-Melo. 2002. Diet composition of sailfish (*Istiophorus platypterus*) from the southern Gulf of California, Mexico. Fisheries Research 57(2):185–195.
- Rose, C. D., and W. W. Hassler. 1974. Food habits and sex ratios of dolphin *Coryphaena hippurus* captured in the western Atlantic Ocean off Hatteras, North Carolina. Transactions of the American Fisheries Society 103(1):94–100.
- Ross, J. L. 1982. Feeding habits of the gray tilefish, *Caulolatilus microps* (Goode and Bean, 1878) from North Carolina and South Carolina waters. Bulletin of Marine Science 32(2):448–454.
- Ross, J. L., J. Pavela, and M. E. Chittenden Jr. 1989. Food habits of the rock sea bass, *Centropristis philadelphica*, in the western Gulf of Mexico. Northeast Gulf Science 10(2):139–152.
- Ross, S. T. 1977. Patterns of resource partitioning in searobins (Pisces: Triglidae). Copeia:561– 571.
- Ross, S. T. 1978. Trophic ontogeny of the leopard searobin, *Prionotus scitulus* (Pisces: Triglidae). Fishery Bulletin 76(1):225–234.
- Ross, S. W., and M. L. Moser. 1995. Life history of juvenile gag, *Mycteroperca microlepis*, in North Carolina estuaries. Bulletin of Marine Science 56(1):222–237.
- Rountree, R. A., and K. W. Able. 1996. Seasonal abundance, growth, and foraging habits of juvenile smooth dogfish, *Mustelus canis*, in a New Jersey estuary. Fishery Bulletin 94(3):522–534.
- Rozas, L. P., and M. W. LaSalle. 1990. A comparison of the diets of Gulf killifish, *Fundulus grandis* Baird and Girard, entering and leaving a Mississippi brackish marsh. Estuaries 13(3):332–336.
- Rudershausen, P., and J. Locascio. 2001. Dietary Habits of the Gafftopsail Catfish, *Bagre marinus*, in Tarpon Bay and Pine Island Sound, Florida. Gulf of Mexico Science 19(2):90–96.
- Rudershausen, P. J., J. A. Buckel, J. Edwards, D. P. Gannon, C. M. Butler, and T. W. Averett. 2010. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Transactions of the American Fisheries Society 139(5):1335–1359.
- Russell, M. 2005. Spotted Sea Trout (*Cynoscion nebulosus*) and Pinfish (*Lagodon rhomboides*) dietary analysis according to habitat type. M.S. thesis, 82 p. Louisiana State University, Baton Rouge, LA.
- Rutherford, E., E. Thue, and D. Baker. 1982. Population characteristics, food habits and spawning activity of spotted seatrout, *Cynoscion nebulosus*, in Everglades National Park, Florida. Report T-668, 48 p.
- Sabatié, R., M. Potier, C. Broudin, B. Seret, F. Ménard, and F. Marsac. 2003. Preliminary analysis of some pelagic fish diet in the Eastern Central Atlantic. Collective Volume of Scientific Papers ICCAT 55(1):292–302.
- Sagarese, S. R., R. M. Cerrato, and M. G. Frisk. 2011. Diet composition and feeding habits of common fishes in Long Island bays, New York. Northeastern Naturalist 18(3):291–314.
- Salini, J., S. Blaber, and D. Brewer. 1994. Diets of trawled predatory fish of the Gulf of Carpentaria, Australia, with particular reference to predation on prawns. Marine and Freshwater Research 45(3):397–411.

- Saloman, C. H., and S. P. Naughton. 1983a. Food of king mackerel, *Scomberomorus cavalla*, from the southeastern United States including the Gulf of Mexico. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Panama City Laboratory.
- Saloman, C. H., and S. P. Naughton. 1983b. Food of Spanish mackerel, *Scomberomorus maculatus*, from the Gulf of Mexico and southeastern seaboard of the United States. NOAA Technical Memorandum NMFS-SEFC-128, 22 p.
- Saloman, C. H., and S. P. Naughton. 1984. Food of crevalle jack (*Caranx hippos*) from Florida, Louisiana, and Texas. NOAA Technical Memorandum NMFS-SEFC-134, 34 p.
- Sámora-Zapata, J., and M. Vega-Cendejas. Ecología alimenticia e interacción trófica de los pargos *Lutjanus griseus* (Linnaeus, 1758) y *Lutjanus synagris* (Linnaeus, 1758) de la laguna de Celestum, Yucatán, México. Proceedings of the 50th Gulf and Caribbean Fisheries Institute, p. 804–826.
- Sánchez, R. P. 2002. Stomach content analysis of *Mugil cephalus* and *Mugil curema* (Mugiliformes: Mugilidae) with emphasis on diatoms in the Tamiahua Iagoon, Mexico. Revista de Biologia Tropical 50(1):245-252.
- Santos, M., R. Fernández, A. López, J. Martínez, and G. Pierce. 2007. Variability in the diet of bottlenose dolphin, *Tursiops truncatus*, in Galician waters, north-western Spain, 1990-2005. Journal of the Marine Biological Association of the United Kingdom 87(1):231– 241.
- Santos, M., G. Pierce, R. Reid, I. Patterson, H. Ross, and E. Mente. 2001. Stomach contents of bottlenose dolphins (*Tursiops truncatus*) in Scottish waters. Journal of the Marine Biological Association of the UK 81(05):873–878.
- Satoh, K., K. Yokawa, H. Saito, H. Matsunaga, H. Okamoto, and Y. Uozumi. 2004. Preliminary stomach contents analysis of pelagic fish collected by Shoyo-Maru 2002 research cruise in the Atlantic Ocean. Collective Volume of Scientific Papers ICCAT 56(3):1096–1114.
- Scharf, F. S., and K. K. Schlicht. 2000. Feeding habits of red drum (*Sciaenops ocellatus*) in Galveston Bay, Texas: Seasonal diet variation and predator-prey size relationships. Estuaries 23(1):128–139.
- Schluessel, V., M. Bennett, and S. Collin. 2010. Diet and reproduction in the white-spotted eagle ray *Aetobatus narinari* from Queensland, Australia and the Penghu Islands, Taiwan. Marine and Freshwater Research 61(11):1278–1289.
- Schmidt, T. 1993. Community Characteristics of Dominant Forage Fishes and Decapods in the Whitewater Bay--Shark River Estuary, Everglades National Park. Technical Report NPS/SEREVER/NRTR-93/12, Atlanta, GA.
- Schmidt, T. W. 1986. Food of young juvenile lemon sharks, *Negaprion brevirostris* (Poey), near Sandy Key, western Florida Bay. Florida Scientist 49(1):7–10.
- Schmidt, T. W. 1989. Food habits, length-weight relationship and condition factor of young great barracuda, *Syphraena barracuda* (Walbaum), from Florida Bay, Everglades National Park, Florida. Bulletin of Marine Science 44(1):163–170.
- Schreiber, R. W., and D. A. Hensley. 1976. The diets of *Sula dactylatra*, *Sula sula*, and *Fregata minor* on Christmas Island, Pacific Ocean. Pacific Science 30(3):241–248.
- Schwartzkopf, B. D. 2014. Assessment of Habitat Quality for Red Snapper, *Lutjanus campechanus*, in the Northwestern Gulf of Mexico: Natural vs. Artificial Reefs. M.S. thesis, 124 p. Louisiana State University, Baton Rouge, LA.
- Scott, W., and S. Tibbo. 1968. Food and feeding habits of swordfish, *Xiphias gladius*, in the western North Atlantic. Journal of the Fisheries Board of Canada 25(5):903–919.
- Seagle, J. 1969. Food habits of spotted seatrout (*Cynoscion nebulosus*, Cuvier) frequenting turtle grass (*Thalassia testudinum*, Konig) beds in Redfish Bay, Texas. Taius 2(1):58– 63.

- Sedberry, G. R. 1988. Food and feeding of black sea bass, *Centropristis striata*, in live bottom habitats in the South Atlantic Bight. The Journal of the Elisha Mitchell Scientific Society 104(2):35–50.
- Sedberry, G. R. 1989. Feeding habits of whitebone porgy, *Calamus leucosteus* (Teleostei: Sparidae), associated with hard bottom reefs off the southeastern United States. Fishery Bulletin 87(4):935–944.
- Sedberry, G. R., and N. Cuellar. 1993. Planktonic and benthic feeding by the reef-associated vermilion snapper, *Rhomboplites aurorubens* (Teleostei, Lutjanidae). Fishery Bulletin 91(4):699–709.
- Seefelt, N. E., and J. C. Gillingham. 2008. Bioenergetics and prey consumption of breeding double-crested cormorants in the Beaver Archipelago, northern Lake Michigan. Journal of Great Lakes Research 34(1):122–133.
- Sekavec, G. B. 1974. Summer foods, length-weight relationship, and condition factor of juvenile ladyfish, *Elops saurus* Linnaeus, from Louisiana coastal streams. Transactions of the American Fisheries Society 103(3):472–476.
- Seney, E. E. 2003. Historical diet analysis of loggerhead (*Caretta caretta*) and Kemp's Ridley (*Lepidochelys kempi*) sea turtles in Virginia. M.S. thesis, 123 p. The College of William and Mary, Williamsburg, VA.
- Seney, E. E., and J. A. Musick. 2007. Historical diet analysis of loggerhead sea turtles (*Caretta caretta*) in Virginia. Copeia 2007(2):478–489.
- Shaffer, R. V., and E. L. Nakamura. 1989. Synopsis of biological data on the cobia *Rachycentron canadum* (Pisces: Rachycentridae). NOAA Technical Report NMFS 82, 21 p.
- Shaver, D. J. 1991. Feeding ecology of wild and head-started Kemp's ridley sea turtles in south Texas waters. Journal of Herpetology 25(3):327–334.
- Shealer, D. A. 1998. Differences in diet and chick provisioning between adult Roseate and Sandwich Terns in Puerto Rico. Condor 100:131–140.
- Sheridan, P. 1978. Food habits of the bay anchovy, *Anchoa mitchilli*, in Apalachicola Bay. Northeast Gulf Science 2(2):126–132.
- Sheridan, P. 2008. Seasonal foods, gonadal maturation, and length-weight relationships for nine fishes commonly captured by shrimp trawl on the Northwest Gulf of Mexico continental shelf. NOAA Technical Memorandum NMFS-SEFSC-566, 40 p.
- Sheridan, P., and D. Trimm. 1983. Summer foods of Texas coastal fishes relative to age and habitat. Fishery Bulletin 81(3):643–647.
- Sheridan, P. F., and R. J. Livingston. 1979. Cyclic trophic relationships of fishes in an unpolluted, river-dominated estuary in North Florida. Ecological Processes in Coastal and Marine Systems 10:143–161.
- Shimose, T., H. Shono, K. Yokawa, H. Saito, and K. Tachihara. 2006. Food and feeding habits of blue marlin, *Makaira nigricans*, around Yonaguni Island, southwestern Japan. Bulletin of Marine Science 79(3):761–775.
- Silvano, R. A. M., and A. Z. Güth. 2006. Diet and feeding behavior of *Kyphosus* spp.(Kyphosidae) in a Brazilian subtropical reef. Brazilian Archives of Biology and Technology 49(4):623–629.
- Simmons, E. G., and J. P. Breuer. 1962. A study of redfish, *Sciaenops ocellata* Linnaeus and black drum, *Pogonias cromis* Linnaeus. Contributions in Marine Science 8:184–211.
- Simonsen, K. A. 2013. Reef fish demographics on Louisiana artificial reefs: the effects of reef size on biomass distribution and foraging dynamics. Ph.D. diss., 186 p. Louisiana State University, Baton Rouge, LA.
- Simonsen, K. A., and J. H. Cowan. 2013. Effects of an inshore artificial reef on the trophic dynamics of three species of estuarine fish. Bulletin of Marine Science 89(3):657–676.

- Simpfendorfer, C. A., A. Goodreid, and R. B. McAuley. 2001. Diet of three commercially important shark species from Western Australian waters. Marine and Freshwater Research 52(7):975–985.
- Sinopoli, M., C. Pipitone, S. Campagnuolo, D. Campo and others. 2004. Diet of young-of-theyear bluefin tuna, *Thunnus thynnus* (Linnaeus, 1758), in the southern Tyrrhenian (Mediterranean) Sea. Journal of Applied Ichthyology 20(4):310–313.
- Sley, A., O. Jarboui, M. Ghorbel, and A. Bouain. 2009. Food and feeding habits of *Caranx crysos* from the Gulf of Gabes (Tunisia). Journal of the Marine Biological Association of the United Kingdom 89(07):1375–1380.
- Smale, M. 1991. Occurrence and feeding of three shark species, *Carcharhinus brachyurus*, *C. obscurus* and *Sphyrna zygaena*, on the Eastern Cape coast of South Africa. South African Journal of Marine Science 11(1):31–42.
- Smale, M. 2005. The diet of the ragged-tooth shark *Carcharias taurus* Rafinesque 1810 in the Eastern Cape, South Africa. African Journal of Marine Science 27(1):331–335.
- Smith, C. L. 1971. A revision of the American groupers: *Epinephelus* and allied genera. Bulletin of the American Museum of Natural History 146:67–242.
- Smith, J. 1995. Life history of Cobia, *Rachycentron canadum* (Osteichthyes: Rachycentridae), in North Carolina waters. Brimleyana 23:1–23.
- Smith, J. W., and J. V. Merriner. 1985. Food habits and feeding behavior of the cownose ray, *Rhinoptera bonasus*, in lower Chesapeake Bay. Estuaries 8(3):305–310.
- Snelson, F. F., Jr., T. J. Mulligan, and S. E. Williams. 1984. Food habits, occurrence, and population structure of the bull shark, *Carcharhinus leucas*, in Florida coastal lagoons. Bulletin of Marine Science 34(1):71–80.
- Snodgrass, D., R. E. Crabtree, and J. E. Serafy. 2008. Abundance, growth, and diet of youngof-the-year bonefish (*Albula* spp.) off the Florida Keys, USA. Bulletin of Marine Science 82(2):185–193.
- Sommerville, E., M. Platell, W. White, A. Jones, and I. Potter. 2011. Partitioning of food resources by four abundant, co-occurring elasmobranch species: relationships between diet and both body size and season. Marine and Freshwater Research 62(1):54–65.
- Spear, L. B., D. G. Ainley, and W. A. Walker. 2007. Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. 99 pp. Cooper Ornithological Society
- Spitz, J., Y. Rousseau, and V. Ridoux. 2006. Diet overlap between harbour porpoise and bottlenose dolphin: An argument in favour of interference competition for food? Estuarine, Coastal and Shelf Science 70(1):259–270.
- Springer, V. G., and K. D. Woodburn. 1960. An ecological study of the fishes of the Tampa Bay area. Florida Department of Natural Resources Marine Research Laboratory, St. Petersburg, FL, 104 p.
- Stallings, C. D., F. C. Coleman, C. C. Koenig, and D. A. Markiewicz. 2010. Energy allocation in juveniles of a warm-temperate reef fish. Environmental Biology of Fishes 88(4):389–398.
- Steimle, F. W., R. A. Pikanowski, D. G. McMillan, C. A. Zetlin, and S. J. Wilk. 2000. Demersal Fish and American Lobster Diets in the Lower Hudson-Raritan Estuary. NOAA Technical Memorandum NMFS-NE-161, 106 p.
- Stevens, J. 1973. Stomach contents of the blue shark (*Prionace glauca* L.) off south-west England. Journal of the marine biological association of the United Kingdom 53(02):357– 361.
- Stevens, J., and J. Lyle. 1989. Biology of three hammerhead sharks (*Eusphyra blochii*, *Sphyrna mokarran* and *S. lewini*) from northern Australia. Marine and Freshwater Research 40(2):129–146.
- Stevens, J., and K. McLoughlin. 1991. Distribution, size and sex composition, reproductive biology and diet of sharks from northern Australia. Marine and Freshwater Research 42(2):151–199.

- Stevens, P. W., D. A. Blewett, T. R. Champeau, and C. J. Stafford. 2010. Posthurricane recovery of riverine fauna reflected in the diet of an apex predator. Estuaries and Coasts 33(1):59–66.
- Stickney, R. R. 1976. Food habits of Georgia estuarine fishes II. *Symphurus plagiusa* (Pleuronectiformes: Cynoglossidae). Transactions of the American Fisheries Society 105(2):202–207.
- Stillwell, C., and N. Kohler. 1982. Food, feeding habits, and estimates of daily ration of the shortfin mako (*Isurus oxyrinchus*) in the northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 39(3):407–414.
- Stillwell, C., and N. Kohler. 1985. Food and feeding ecology of the swordfish *Xiphias gladius* in the western North Atlantic Ocean with estimates of daily ration. Marine Ecology Progress Series 22(3):239–247.
- Stillwell, C., and N. Kohler. 1993. Food habits of the sandbar shark *Carcharhinus plumbeus* off the U. S. northeast coast, with estimates of daily ration. Fishery Bulletin 91(1):138–150.
- Stoner, A. W., and R. J. Livingston. 1984. Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984(1):174–187.
- Struhsaker, P. 1969. Observations on the biology and distribution of the thorny stingray, Dasyatis centroura (Pisces: Dasyatidae). Bulletin of Marine Science 19(2):456–481.
- Szczepanski Jr, J. A. 2013. Feeding Ecology of Skates and Rays in Delaware and Narragansett Bays: an analysis of resource usage. Ph.D. diss., 199 p. University of Rhode Island, Kingston, RI.
- Szedlmayer, S., and J. Lee. 2004. Diet shifts of juvenile red snapper (*Lutjanus campechanus*) with changes in habitat and fish size. Fishery Bulletin 102(2):366–375.
- Tabb, D. C. 1961. A contribution to the biology of the spotted seatrout, *Cynoscion nebulosus* (Cuvier) of east-central Florida. State of Florida Board of Conservation Technical Series No. 35, Miami, FL, 24 p.
- Targett, T. 1978. Food resource partitioning by the pufferfishes *Sphoeroides spengleri* and *S. testudineus* from Biscayne Bay, Florida. Marine Biology 49(1):83–91.
- Tavares, R. 2008. Occurrence, diet and growth of juvenile blacktip sharks, *Carcharhinus limbatus*, from Los Roques Archipelago National Park, Venezuela. Caribbean Journal of Science 44(3):291–302.
- Teixeira, R. L. 1997. Distribution and feeding habits of the young common snook, *Centropomus undecimalis* (Pisces: Centropomidae), in the shallow waters of a tropical Brazilian estuary. Boletim do Museu de Biologia Mello Leitão Nova Série 6:35–46.
- Thompson, C. W., E. R. Donelan, M. M. Lance, and A. E. Edwards. 2002. Diet of Caspian Terns in Commencement Bay, Washington. Waterbirds 25(1):78–85.
- Thompson, R., and J. Munro. 1978. Aspects of the biology and ecology of Caribbean reef fishes: Serranidae (hinds and groupers). Journal of Fish Biology 12(2):115–146.
- Tilghman, G. C., R. Klinger-Bowen, and R. Francis-Floyd. 2001. Feeding electivity indices in surgeonfish (Acanthuridae) of the Florida Keys. Aquarium Sciences and Conservation 3(1-3):215–223.
- Toepfer, C., and J. Fleeger. 1995. Diet of juvenile fishes *Citharichthys spilopterus*, *Symphurus plagiusa*, and *Gobionellus boleosoma*. Bulletin of Marine Science 56(1):238–249.
- Tomas, J., F. Aznar, and J. Raga. 2001. Feeding ecology of the loggerhead turtle *Caretta caretta* in the western Mediterranean. Journal of Zoology 255(4):525–532.
- Topp, R. W., and F. H. Hoff Jr. 1972. Flatfishes (Pleuronectiformes). Memoirs of the hourglass cruises 4(2):135.
- Torres-Rojas, Y. E., A. Hernández-Herrera, F. Galván-Magaña, and V. G. Alatorre-Ramírez. 2010. Stomach content analysis of juvenile, scalloped hammerhead shark *Sphyrna lewini* captured off the coast of Mazatlán, Mexico. Aquatic Ecology 44(1):301–308.
- Tremain, D. M., and D. H. Adams. 2012. Mercury in groupers and sea basses from the Gulf of Mexico: Relationships with size, age, and feeding ecology. Transactions of the American Fisheries Society 141(5):1274–1286.
- Tsikliras, A. C., M. Torre, and K. I. Stergiou. 2005. Feeding habits and trophic level of round sardinella (*Sardinella aurita*) in the northeastern Mediterranean (Aegean Sea, Greece). Journal of Biological Research 3:67–75.
- Tuma, R. E. 1976. An investigation of the feeding habits of the bull shark, Carcharhinus leucas, in the Lake Nicaragua-Rio San Juan system. *In*: Investigations of the Ichthyofauna of Nicaraguan Lakes (T. B. Thorson, ed.), p. 533-538. School of Life Sciences, University of Nebraska, Lincoln, NE.
- Turingan, R. G. 1994. Ecomorphological relationships among Caribbean tetraodontiform fishes. Journal of Zoology 233(3):493–521.
- Van Noord, J., E. Lewallen, and R. Pitman. 2013. Flyingfish feeding ecology in the eastern Pacific: prey partitioning within a speciose epipelagic community. Journal of Fish Biology 83(2):326–342.
- Varghese, S. P., V. Somvanshi, and D. K. Gulati. 2013. Ontogenetic and seasonal variations in the feeding ecology of Indo-Pacific sailfish, *Istiophorus platypterus* (Shaw, 1792) of the eastern Arabian Sea. Indian Journal of (Geo) Marine Sciences 42(5):593–605.
- Vaske Jr, T., R. P. Lessa, T. M. Barbosa, M. T. Tolotti, and A. C. Bezerra Ribeiro. 2008. Stomach contents of the Caribbean pomfret *Brama caribbea* (Mead, 1972) from stomach contents of great pelagic predators from Southwestern equatorial Atlantic. Boletim do Instituto de Pesca 34(2):241–249.
- Vaske, T. J., R. P. Lessa, and O. B. F. Gadig. 2009. Feeding habits of the blue shark (*Prionace glauca*) off the coast of Brazil. Biota Neotropica 9(3):55–60.
- Vaske, T. J., P. Travassos, P. Pinheiro, F. Hazin, M. Tolotti, and T. Barbosa. 2011. Diet of the blue marlin (*Makaira nigricans*, Lacepede 1802) (Perciformes: Istiophoridae) of the southwestern equatorial Atlantic Ocean. Brazilian Journal of Aquatic Science and Technology 15(1):65–70.
- Vaske, T. J., P. E. Travassos, F. H. V. Hazin, M. T. Tolotti, and T. M. Barbosa. 2012. Forage fauna in the diet of bigeye tuna (*Thunnus obesus*) in the western tropical Atlantic Ocean. Brazilian Journal of Oceanography 60(1):89–97.
- Vaske, T. J., C. M. Vooren, and R. P. Lessa. 2004. Feeding habits of four species of Istiophoridae (Pisces: Perciformes) from northeastern Brazil. Environmental Biology of Fishes 70(3):293–304.
- Vaske, T. J., C. M. Voorhen, and R. P. Lessa. 2003. Feeding strategy of yellowfin tuna (*Thunnus albacares*), and wahoo (*Acanthocybium solandri*) in the Saint Peter and Saint Paul, Archipelago, Brazil. Boletim do Instituto de Pesca, São Paulo 29(1):173–181.
- Vega-Cendejas, M., M. Hernández, and F. Arreguin-Sanchez. 1994. Trophic interrelations in a beach seine fishery from the northwestern coast of the Yucatan peninsula, Mexico. Journal of Fish Biology 44(4):647–659.
- Vega-Cendejas, M., G. Mexicano-Cíntora, and A. Arce. 1997. Biology of the thread herring *Opisthonema oglinum* (Pisces: Clupeidae) from a beach seine fishery of the Campeche Bank, Mexico. Fisheries Research 30(1):117–126.
- Vega-Cendejas, M. E., and M. Hernández. 2002. Isla Contoy-A mexican caribbean ecosystem used by tarpon, *Megalops atlanticus* as a feeding area. Contributions in Marine Science 35:70–80.
- Vose, F. E., and W. G. Nelson. 1994. Gray triggerfish (*Balistes capriscus* Gmelin) feeding from artificial and natural substrate in shallow Atlantic waters of Florida. Bulletin of Marine Science 55(2-3):1316–1323.
- Voss, G. L. 1953. A contribution to the life history and biology of the sailfish, *Istiophorus americanus* Cuv. and Val., in Florida waters. Bulletin of Marine Science 3(3):206–240.

- Waggy, G. L., M. S. Peterson, and B. H. Comyns. 2007. Feeding habits and mouth morphology of young silver perch (*Bairdiella chrysoura*) from the north-central Gulf of Mexico. Southeastern Naturalist 6(4):743–751.
- Wainwright, P. C. 1987. Biomechanical limits to ecological performance: mollusc-crushing by the Caribbean hogfish, *Lachnolaimus maximus* (Labridae). Journal of Zoology 213(2):283–297.
- Warmke, G., and D. S. Erdman. 1963. Records of marine mollusks eaten by bonefish in Puerto Rican waters. Nautilus 76(4):115–120.
- Watanabe, H., T. Kubodera, and K. Yokawa. 2009. Feeding ecology of the swordfish *Xiphias gladius* in the subtropical region and transition zone of the western North Pacific. Marine Ecology Progress Series 396:111–122.
- Weaver, D. C. 1996. Feeding ecology and ecomorphology of three sea basses (Pisces: Serranidae) in the northeastern Gulf of Mexico. M.S. thesis, 94 p. University of Florida, Gainseville, FL.
- Weaver, D. C., and K. J. Sulak. 1998. Trophic subsidies in the twilight zone: food web structure of deep reef fishes along the Mississippi-Alabama outer continental shelf. *In*: Proceedings of the Eighteenth Annual Gulf of Mexico Information Transfer Meeting, December, 1998 (McKay, and J. Nides, eds.), p. 203-208. U.S. Departement of Interior, Minerals Management Service, Gulf of Mexico OCS Region.
- Weaver, J. E., and L. F. Holloway. 1974. Community structure of fishes and macrocrustaceans in ponds of a Louisiana tidal marsh influenced by weirs. Contributions in Marine Science 18:57–69.
- Weinberger, C. S., and J. M. Posada. 2004. Analysis on the diet of bonefish, *Albula vulpes*, in Los Roques Archipelago National Park, Venezuela. Contributions in Marine Science 37:30–45.
- Wells, R. D., J. Cowan, and B. Fry. 2008. Feeding ecology of red snapper *Lutjanus* campechanus in the northern Gulf of Mexico. Marine Ecology Progress Series 361:213– 225.
- Wheeler, K. N., C. C. Stark, and R. W. Heard. 2002. A preliminary study of the Summer feeding habits of juvenile Florida pompano (*Trachinotus carolinus*) from open and protected beaches of the northeastern Gulf of Mexico. Gulf and Caribbean Fisheries Institute 53:659–673.
- Winemiller, K. O., S. Akin, and S. C. Zeug. 2007. Production sources and food web structure of a temperate tidal estuary: integration of dietary and stable isotope data. Marine Ecology Progress Series 343(6):63–76.
- Withers, K., and T. S. Brooks. 2004. Diet of double-crested cormorants (*Phalacrocorax auritus*) wintering on the central Texas coast. The Southwestern Naturalist 49(1):48–53.
- Witzell, W. N., and J. R. Schmid. 2005. Diet of immature Kemp's ridley turtles (*Lepidochelys kempi*) from Gullivan Bay, Ten Thousand Islands, southwest Florida. Bulletin of Marine Science 77(2):191–199.
- Wood, A. D., B. M. Wetherbee, F. Juanes, N. E. Kohler, and C. Wilga. 2009. Recalculated diet and daily ration of the shortfin mako (*Isurus oxyrinchus*), with a focus on quantifying predationon bluefish (*Pomatomus saltatrix*) in the northwest Atlantic Ocean. Fishery Bulletin 107(1):76–88.
- Woodland, R. J., D. H. Secor, and M. E. Wedge. 2011. Trophic resource overlap between small elasmobranchs and sympatric teleosts in Mid-Atlantic Bight nearshore habitats. Estuaries and Coasts 34(2):391–404.
- Wrast, J. L. 2008. Spatiotemporal and habitat-mediated food web dynamics in Lavaca Bay, Texas. M.S. thesis, 102 p. Texas A&M University-Corpus Christi, Corpus Christi, TX.

- Xavier, J., M. C. Magalhães, A. Mendonça, M. Antunes and others. 2011. Changes in diet of Cory's Shearwaters *Calonectris diomedea* breeding in the Azores. Marine Ornithology 39:129–134.
- Yan, Y., G. Hou, J. Chen, H. Lu, and X. Jin. 2011. Feeding ecology of hairtail *Trichiurus margarites* and largehead hairtail *Trichiurus lepturus* in the Beibu Gulf, the South China Sea. Chinese Journal of Oceanology and Limnology 29(1):174–183.
- Yáñez-Arancibia, A., and A. L. Lara-Domínguez. 1988. Ecology of three sea catfishes (Ariidae) in a tropical coastal ecosystem-southern Gulf of Mexico. Marine Ecology Progress Series 49:215–230.
- Yeager, L. A., and C. A. Layman. 2011. Energy flow to two abundant consumers in a subtropical oyster reef food web. Aquatic Ecology 45(2):267–277.
- Yokota, L., R. Goitein, M. Gianeti, and R. Lessa. 2013. Diet and feeding strategy of smooth butterfly ray *Gymnura micrura* in northeastern Brazil. Journal of Applied Ichthyology 29(6):1325–1329.
- Young, J., R. Bradford, T. Lamb, L. Clementson, R. Kloser, and H. Galea. 2001. Yellowfin tuna (*Thunnus albacares*) aggregations along the shelf break off south-eastern Australia: links between inshore and offshore processes. Marine and Freshwater Research 52(4):463–474.
- Young, J., M. Lansdell, S. Riddoch, and A. Revill. 2006. Feeding ecology of broadbill swordfish, *Xiphias gladius*, off eastern Australia in relation to physical and environmental variables. Bulletin of Marine Science 79(3):793–809.
- Young, J. W., M. J. Lansdell, R. A. Campbell, S. P. Cooper, F. Juanes, and M. A. Guest. 2010. Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Marine Biology 157(11):2347–2368.
- Young, R. F., H. E. Winn, and W. Montgomery. 2003. Activity patterns, diet, and shelter site use for two species of moray eels, *Gymnothorax moringa* and *Gymnothorax vicinus*, in Belize. Copeia 2003(1):44–55.

## Appendix 2 – menhaden plausible predators' analyses and data

Table S2.1. Summary of menhaden bycatch studies. At-sea studies report both releasable and landed bycatch. - indicates no data.

| Study                            | Area  | Sampled | Year        | Months    | Effort   | Total<br>Bvca | tch  | Notes                                                                                                                                                                                         |
|----------------------------------|-------|---------|-------------|-----------|----------|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Olddy                            | /100  | %W %N   |             | %N        |          |               |      |                                                                                                                                                                                               |
| de Silva and<br>Condrey (1998)   | TX-MS | At-sea  | 1995        | Apr - Oct | 257 sets | -             | 0.17 |                                                                                                                                                                                               |
| de Silva <i>et al.</i><br>(1996) | TX-MS | At-sea  | 1994        | Jun - Oct | 455 sets | 0.66          | 1.51 | Also discussed in de Silva (1998) dissertation                                                                                                                                                |
| Condrey (1994)                   | LA-AL | At-sea  | 1992        | Apr - Oct | 49 sets  | 1.20          | 1.00 |                                                                                                                                                                                               |
| Guillory and<br>Hutton (1982)    | LA    | Plant   | 1980        | Apr - Oct | 24 trips | 1.60          | 2.39 | Large specimens (e.g., shark, crevalle jacks,<br>etc.) were either removed from the catch<br>during harvesting or unloading to prevent                                                        |
|                                  | LA    | Plant   | 1981        | Apr - Oct | 18 trips | 3.10          | 2.96 | damage to the suction pumps or retained for personal consumption                                                                                                                              |
|                                  | LA    | Plant   | 1980-<br>81 | Apr - Oct | 42 trips | 2.35          | 2.68 |                                                                                                                                                                                               |
| Dunham (1972)                    | LA    | Dock    | 1971        | Jun – Oct | NA       | -             | 0.05 | Large species of fish usually removed from<br>the catch during harvesting or unloading,<br>since they caused damage to nets and/or<br>unloading pumps or retained for personal<br>consumption |
|                                  | LA    | Dock    | 1972        | May - Jun | NA       | 2.00          | -    |                                                                                                                                                                                               |

Table S2.1-Continued. Summary of menhaden bycatch studies. At-sea studies report both releasable and landed bycatch. - indicates no data.

| Study                             | Area  | Sampled | Year        | Months            | Effort   | Total<br>Bycat | tch  | Notes                                                                                                                                                                                     |
|-----------------------------------|-------|---------|-------------|-------------------|----------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Christmas <i>et al.</i><br>(1960) | MS    | At-sea  | 1958        | Jun - Aug,<br>Oct | 62 sets  | 2.80           | 3.90 | Larger species often excluded from samples<br>(e.g., mackerel only in 5 samples but<br>observed in 26 sets). Imperfect identification<br>of the releasable bycatch (i.e., hard to ID fish |
|                                   | MS    | At-sea  | 1959        | May               | 27 sets  | 2.80           | 3.90 | In the net from the deck)                                                                                                                                                                 |
| Stevens (1960)                    | TX-LA | Plant   | 1959-<br>60 | NA                | NA       | 0.00           | 0.00 | When game fish are taken in nets, they are often retained for personal consumption                                                                                                        |
| Knapp (1950)                      | LA    | At-sea  | 1948        | Jun - Aug         | 17 hauls | -              | 0.06 | Observer placed on single steamer (H. C. Dashiell)                                                                                                                                        |
| Miles and<br>Simmons<br>(1950)    | ТХ    | At-sea  | 1949        | Jun - Sep         | 143 sets | -              | 0.14 | Observer placed on single steamer (Alfred E. Davies, Jr)                                                                                                                                  |
| Simmons<br>(1949)                 | LA    | At-sea  | 1948        | Jun - Aug         | 59 hauls | -              | 0.03 | Observer placed on single steamer (H. C.<br>Dashiell); discussed in Miles and Simmons<br>(1950)                                                                                           |

Table S2.2. Comparison of species composition and abundance (number or percentage where denoted with %N) across studies quantifying bycatch in the menhaden fishery. - indicates no data. Bycatch species have been organized according to the functional group in the Gulf-wide ecosystem model. Note that \* under Christmas (1960) reference means that the species was observed in the nets but not in the samples.

| Species                 | Scientific name            | Simmons<br>(1949) | Knapp<br>(1950) | Breuer<br>(1950) | Christ-<br>mas<br>(1960) | Condrey<br>(1994)<br>Release | de Silva<br>and<br>Condrey<br>(1998) | Dun-<br>ham<br>(1972) | Condrey<br>(1994)<br>Retained<br>(%N) | Guillory<br>and<br>Hutton<br>(1982)<br>(%N) |
|-------------------------|----------------------------|-------------------|-----------------|------------------|--------------------------|------------------------------|--------------------------------------|-----------------------|---------------------------------------|---------------------------------------------|
| Dolphins                |                            |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Porpoise                | Phocoenidae                | -                 | -               | -                | -                        | 5                            | -                                    | -                     | -                                     | -                                           |
| Large coastal sharks    |                            |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Blacktip                | Carcharhinus limbatus      | -                 | -               | -                | *                        | -                            | 184                                  | -                     | -                                     | -                                           |
| Bull                    | Carcharhinus leucas        | -                 | -               | -                | *                        | -                            | 39                                   | -                     | -                                     | -                                           |
| Requiem                 | Carcharhinus sp.           | -                 | -               | -                | -                        | -                            | 57                                   | -                     | -                                     | -                                           |
| Sand                    | Carcharias littoralis      | -                 | -               | 163              | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Hammerhead              | Sphyrna sp.                | -                 | -               | 13               | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Shark                   | Elasmobranch               | 63                | 63              | -                | -                        | 201                          | -                                    | 7                     | -                                     | 0.4                                         |
| Small coastal sharks    |                            |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Bonnethead              | Sphyrna tiburo             | -                 | -               | 26               | *                        | -                            | -                                    | -                     | -                                     | -                                           |
| Pelagic coastal piscive | ores                       |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Blue runner             | Caranx crysos              | -                 | -               | 8                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Crevalle jack           | Caranx hippos              | -                 | -               | 91               | *                        | 246                          | 349                                  | 2                     | -                                     | 0.2                                         |
| Bluefish                | Pomatomus saltatrix        | 42                | 42              | 304              | 3                        | 3                            | -                                    | 7                     | 0.3                                   | 0.4                                         |
| Atlantic needlefish     | Strongylura marina         | -                 | -               | 3                | -                        | 2                            | -                                    | -                     | -                                     | -                                           |
| King mackerel           | Scomberomorus cavalla      | -                 | -               | 1                | -                        | 4                            | -                                    | -                     | -                                     | 0.1                                         |
| Spanish mackerel        | Scomberomorus<br>maculatus | 107               | 47              | 205              | 5                        | 101                          | 241                                  | 10                    | 0.9                                   | 1                                           |
| Coastal piscivores      |                            |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Ladyfish                | Elops saurus               | -                 | -               | -                | -                        | 5                            | -                                    | -                     | -                                     | 0.3                                         |
| Atlantic tarpon         | Megalops Atlanticus        | 5                 | 5               | 13               | *                        | -                            | -                                    | -                     | -                                     | -                                           |
| Sea trout               | -                          |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Sand seatrout           | Cynoscion arenarius        | -                 | -               | -                | 83                       | 69                           | -                                    | -                     | 3.1                                   | -                                           |

Table S2.2-Continued. Comparison of species composition and abundance (number or percentage where denoted with %N) across studies quantifying bycatch in the menhaden fishery. - indicates no data. Bycatch species have been organized according to the functional group in the Gulf-wide ecosystem model. Note that \* under Christmas (1960) reference means that the species was observed in the nets but not in the samples.

| Species               | Scientific name          | Simmons<br>(1949) | Knapp<br>(1950) | Breuer<br>(1950) | Christ-<br>mas<br>(1960) | Condrey<br>(1994)<br>Release | de Silva<br>and<br>Condrey<br>(1998) | Dun-<br>ham<br>(1972) | Condrey<br>(1994)<br>Retained<br>(%N) | Guillory<br>and<br>Hutton<br>(1982)<br>(%N) |
|-----------------------|--------------------------|-------------------|-----------------|------------------|--------------------------|------------------------------|--------------------------------------|-----------------------|---------------------------------------|---------------------------------------------|
| Spotted seatrout      | Cynoscion nebulosus      | 2                 | 2               | 3                | 7                        | 19                           | -                                    | 5                     | -                                     | 2.2                                         |
| Silver trout          | Cynoscion nothus         | -                 | -               | 242              | 70                       | 29                           | -                                    | -                     | 6                                     | -                                           |
| Seatrout              | Cynoscion sp.            | 77                | 77              | -                | -                        | -                            | 3,507                                | 11                    | -                                     | 19.7                                        |
| Oceanic piscivores    |                          |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Largehead hairtail    | Trichiurus lepturus      | 72                | -               | 247              | 13                       | 86                           | 470                                  | 7                     | 0.9                                   | 1.3                                         |
| Benthic piscivores    |                          |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Southern flounder     | Paralichthys lethostigma | -                 | 3               | -                | *                        | -                            | -                                    | -                     | -                                     | -                                           |
| Fourspotted flounder  | Paralichthys oblongus    | -                 | -               | 2                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Flounder              | Paralichthys sp.         | 7                 | -               | 5                | -                        | -                            | -                                    | 7                     | -                                     | -                                           |
| Inshore lizardfish    | Synodus foetens          | -                 | -               | 1                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Skates and Rays       |                          |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Spotted eagle ray     | Aetobatus narinari       | -                 | 1               | 1                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Atlantic stingray     | Dasyatis sabina          | -                 | 12              | 9                | 2                        | -                            | -                                    | -                     | -                                     | 0.1                                         |
| Stingrays             | Dasyatis sp.             | 13                | -               | -                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Smooth butterfly ray  | Gymnura micrura          | -                 | -               | 9                | 0                        | -                            | -                                    | -                     | -                                     | -                                           |
| Skate                 | <i>Raja</i> sp.          | -                 | -               | -                | -                        | -                            | -                                    | 4                     | -                                     | -                                           |
| Texas clearnose skate | Raja texana              | -                 | -               | -                | 1                        | -                            | -                                    | -                     | -                                     | -                                           |
| Cownose ray           | Rhinoptera bonasus       | -                 | -               | 24               | *                        | 25                           | 70                                   | 37                    | -                                     | 0.1                                         |
| Grouper               |                          |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Atlantic goliath      | Eninopholya itaiara      |                   |                 |                  | *                        |                              |                                      |                       |                                       |                                             |
| grouper               | Epinepheius itajara      | -                 | -               | -                |                          | -                            | -                                    | -                     | -                                     | -                                           |
| Demersal coastal inve | rtebrate feeders         |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Red drum              | Sciaenops ocellatus      | 1                 | 1               | -                | -                        | 15                           | 245                                  | -                     | -                                     | -                                           |
| Catfish               | Ariidae                  | -                 | -               | -                | -                        | -                            | 1,002                                | -                     | -                                     | -                                           |
| Gafftopsail catfish   | Bagre marina             | 3                 | 3               | 36               | 85                       | 825                          | -                                    | 33                    | 5.3                                   | 1.1                                         |

Table S2.2-Continued. Comparison of species composition and abundance (number or percentage where denoted with %N) across studies quantifying bycatch in the menhaden fishery. - indicates no data. Bycatch species have been organized according to the functional group in the Gulf-wide ecosystem model. Note that \* under Christmas (1960) reference means that the species was observed in the nets but not in the samples.

| Species                 | Scientific name         | Simmons<br>(1949) | Knapp<br>(1950) | Breuer<br>(1950) | Christ-<br>mas<br>(1960) | Condrey<br>(1994)<br>Release | de Silva<br>and<br>Condrey<br>(1998) | Dun-<br>ham<br>(1972) | Condrey<br>(1994)<br>Retained<br>(%N) | Guillory<br>and<br>Hutton<br>(1982)<br>(%N) |
|-------------------------|-------------------------|-------------------|-----------------|------------------|--------------------------|------------------------------|--------------------------------------|-----------------------|---------------------------------------|---------------------------------------------|
| Hardhead catfish        | Galeichthys felis       | 3                 | -               | 18               | 83                       | 95                           | -                                    | 118                   | 4.7                                   | 8.3                                         |
| Southern kingcroaker    | Menticirrhus americanus | -                 | -               | -                | 18                       | -                            | -                                    | 6                     | -                                     | 0.2                                         |
| Northern kingfish       | Menticirrhus focaliger  | -                 | -               | -                | 1                        | -                            | -                                    | -                     | -                                     | -                                           |
| Gulf kingcroaker        | Menticirrhus littoralis | -                 | -               | -                | 10                       | -                            | -                                    | -                     | -                                     | -                                           |
| Kingcroaker             | <i>Menticirrhus</i> sp. | 7                 | 7               | 8                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Black drum              | Pogonias cromis         | 3                 | 3               | -                | -                        | 19                           | -                                    | 3                     | -                                     | -                                           |
| Benthic coastal inverte | ebrate feeders          |                   |                 |                  |                          |                              |                                      |                       |                                       |                                             |
| Polka-dot batfish       | Ogcocephalus radiatus   | -                 | -               | 8                | -                        | -                            | -                                    | -                     | -                                     | -                                           |
| Crested cusk-eel        | Ophidion welshi         | -                 | -               | -                | -                        | -                            | -                                    | 1                     | -                                     | -                                           |
| Southern hake           | Urophycis floridana     | -                 | -               | -                | *                        | -                            | -                                    | -                     | -                                     | -                                           |

Table S2.3. Potential predators of menhaden in the Gulf of Mexico and justifications (e.g., percent contribution of fish to total predator diet, taxonomic resolution at which potential menhaden consumption has been reported, and co-occurrence in menhaden bycatch). Atl refers to observations of predation on *Brevoortia tyrannus* and Gulf refers to *Brevoortia patronus*. Species groups are defined in Table 1. References by species and prey item are provided in Table S2.4.

| Duadatar                    | Fish     |     | Repo | orted Predation of   | n       | PS      | Disusible predator of menhader?                                                                                                          |
|-----------------------------|----------|-----|------|----------------------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| Predator                    | (% diet) | Atl | Gulf | <i>Brevoortia</i> sp | Clupeid | Bycatch | Plausible predator of menhaden?                                                                                                          |
| Coastal dolphins            | 79       | Х   | Х    | Х                    | Х       |         | Yes - <i>B. patronus</i> predation                                                                                                       |
| Sea birds                   | 67       | Х   | Х    | Х                    | Х       |         | Yes - <i>B. patronus</i> predation                                                                                                       |
| Sea turtles                 | 23       | Х   |      |                      |         |         | Yes? - <i>Brevoortia</i> sp. predation in Atlantic (assumed interaction could occur in GOM)                                              |
| Blacktip shark              | 88       | Х   | Х    | Х                    | Х       | Х       | Yes - <i>B. patronus</i> predation and present in purse seine bycatch                                                                    |
| Dusky shark                 | 77       |     |      | Х                    | Х       | X?      | Yes - <i>Brevoortia</i> sp. predation and possibly<br>present in purse seine bycatch<br>("Carcharhinidae")                               |
| Sandbar shark               | 63       | Х   |      | Х                    | Х       | X?      | Yes - <i>Brevoortia</i> sp. predation and possibly present in purse seine bycatch ("Carcharhinidae")                                     |
| Large coastal<br>sharks     | 78       | Х   | Х    | Х                    | Х       | Х       | Yes - <i>B. patronus</i> predation and present in purse seine bycatch                                                                    |
| Large oceanic<br>sharks     | 80       | Х   |      |                      | Х       |         | Yes? - <i>Brevoortia</i> sp. predation in Atlantic (assumed interaction could occur in GOM)                                              |
| Atlantic sharpnose<br>shark | 64       |     | Х    | Х                    | Х       |         | Yes - <i>B. patronus</i> predation                                                                                                       |
| Small coastal<br>sharks     | 44       | Х   | Х    | Х                    | Х       | Х       | Yes - <i>B. patronus</i> predation and present in purse seine bycatch                                                                    |
| Yellowfin tuna              | 76       | Х   |      |                      | Х       |         | Yes? - <i>Brevoortia</i> sp. predation in Atlantic (assumed interaction could occur in GOM)                                              |
| Bluefin tuna                | 77       | Х   |      |                      | Х       |         | Yes? - <i>Brevoortia</i> sp. predation in Atlantic (assumed interaction could occur in GOM)                                              |
| Other tunas                 | 78       |     |      |                      | Х       |         | No? - clupeids probably refer to offshore species?                                                                                       |
| Billfish<br>Swordfish       | 76<br>59 | Х   |      | Х                    | Х       |         | Yes? - <i>Brevoortia</i> sp. predation<br>Yes? - <i>Brevoortia</i> sp. predation in Atlantic<br>(assumed interaction could occur in GOM) |

Table S2.3-Continued. Potential predators of menhaden in the Gulf of Mexico and justifications (e.g., percent contribution of fish to total predator diet, taxonomic resolution at which potential menhaden consumption has been reported, and cooccurrence in menhaden bycatch). Atl refers to observations of predation on *Brevoortia tyrannus* and Gulf refers to *Brevoortia patronus*. Species groups are defined in Table 1. References by species and prey item are provided in Table S2.4.

| Dradator               | Fish     | Pre | dation |                      |         | PS      | Diqueible predeter of mersheden?                  |
|------------------------|----------|-----|--------|----------------------|---------|---------|---------------------------------------------------|
| Predator               | (% diet) | Atl | Gulf   | <i>Brevoortia</i> sp | Clupeid | Bycatch | Plausible predator of menhaden?                   |
| Amberjacks             | 75       |     |        |                      | Х       |         | No? - clupeids probably refer to offshore         |
|                        |          |     |        |                      |         |         | species?                                          |
| Cobia                  | 60       | Х   | Х      | Х                    | Х       |         | Yes - <i>B. patronu</i> s predation               |
| King mackerel (0-1 yr) | 80       |     |        |                      | Х       | Х       | Yes - present inshore, with feeding habits        |
|                        |          |     |        |                      |         |         | assumed similar to adults                         |
| King mackerel (1+ yr)  | 74       | Х   | Х      | Х                    | Х       | Х       | Yes - <i>B. patronus</i> predation and present in |
|                        |          |     |        |                      |         |         | purse seine bycatch                               |
| Spanish mackerel (0-   | 79       |     | Х      |                      | Х       | Х       | Yes - <i>B. patronus</i> predation and present in |
| 1yr)                   |          |     |        |                      |         |         | purse seine bycatch                               |
| Spanish mackerel (1+   | 82       | Х   | Х      | Х                    | Х       | Х       | Yes - <i>B. patronus</i> predation and present in |
| yr)                    |          |     |        |                      |         |         | purse seine bycatch                               |
| Pelagic coastal        | 68       | Х   | Х      | Х                    | Х       | Х       | Yes - <i>B. patronus</i> predation and present in |
| piscivores             | - /      |     |        |                      |         |         | purse seine bycatch                               |
| Coastal piscivores     | 51       |     | Х      | Х                    | Х       | Х       | Yes - B. patronus predation and present in        |
|                        | 40       |     |        | N/                   |         | N/      | purse seine bycatch                               |
| Sea trout              | 43       |     | Х      | Х                    | Х       | Х       | Yes - B. patronus predation and present in        |
| <b>o</b> · · · ·       | 0.4      |     |        |                      | V       | V       | purse seine bycatch                               |
| Oceanic piscivores     | 61       |     |        |                      | Х       | Х       | Yes? - consumes "clupeids" and present in         |
|                        |          |     |        | V                    | V       | V       | purse seine bycatch (multiple studies)            |
| Benthic piscivores     | 62       |     |        | X                    | Х       | Х       | Yes? - Brevoortia sp. predation and present in    |
| Deefeiseisense         | 40       |     |        |                      | V       |         | purse seine bycatch                               |
| Reef piscivores        | 48       |     |        |                      | X       | V       | No? – clupeid likely refers to reef species       |
| Skates-Rays            | 38       |     |        |                      |         | X       | NO? – Dycatch likely incidental (no evidence of   |
|                        | 67       |     | V      |                      | V       |         | predation)                                        |
| Gag grouper (0-3 yr)   | 07<br>70 |     |        |                      | A<br>V  |         | Yes - D. patronus predation                       |
| Gag grouper (3+ yr)    | 70       |     | Х      |                      | X       |         | res - <i>B. patronus</i> predation                |
| kea grouper            | 58       |     |        |                      | X       |         | ino - ciupeia likely refers to reef fish          |

Table S2.3-Continued. Potential predators of menhaden in the Gulf of Mexico and justifications (e.g., percent contribution of fish to total predator diet, taxonomic resolution at which potential menhaden consumption has been reported, and cooccurrence in menhaden bycatch). Atl refers to observations of predation on *Brevoortia tyrannus* and Gulf refers to *Brevoortia patronus*. Species groups are defined in Table 1. References by species and prey item are provided in Table S2.4.

| Dradatar              | Fish     | Pre | dation |                      |         | PS      | Diqueible produtor of menhaden?                                              |
|-----------------------|----------|-----|--------|----------------------|---------|---------|------------------------------------------------------------------------------|
| Predator              | (% diet) | Atl | Gulf   | <i>Brevoortia</i> sp | Clupeid | Bycatch | Plausible predator or menhaden?                                              |
| Goliath grouper       | 50       |     |        | •                    |         | Х       | No? - bycatch likely incidental                                              |
| Shallow-water grouper | 56       |     |        |                      | Х       |         | No - clupeid likely refers to reef fish                                      |
| Deep-water grouper    | 44       |     |        |                      | Х       |         | No - clupeid likely refers to reef fish                                      |
| Tilefish              | 17       | Х   |        |                      | Х       |         | No? - <i>Brevoortia</i> sp. predation in Atlantic, but assumed deeper in GOM |
| Red snapper (0-1 yr)  | 55       |     |        |                      | Х       |         | No? - no evidence of consumption of                                          |
|                       |          |     |        |                      |         |         | Brevoortia sp.                                                               |
| Red snapper (1-2 yr)  | 55       |     |        |                      | Х       |         | No? - clupeid likely refers to non-Brevoortia                                |
|                       |          |     |        |                      |         |         | sp.                                                                          |
| Red snapper (3+ yr)   | 51       |     |        |                      |         |         | No? - clupeid likely refers to non-Brevoortia                                |
|                       |          |     |        |                      |         |         | sp.                                                                          |
| Vermilion snapper     | 18       |     |        |                      | Х       |         | No? - clupeid likely refers to reef species                                  |
| Other snapper         | 41       |     |        | Х                    |         |         | Yes? - Brevoortia sp. predation by gray                                      |
|                       |          |     |        |                      |         |         | snapper                                                                      |
| Red drum              | 45       |     | Х      | Х                    |         | Х       | Yes - B. patronus predation and present in                                   |
|                       |          |     |        |                      |         |         | purse seine bycatch                                                          |
| Demersal coastal      | 1        |     | Х      | Х                    | Х       | Х       | Yes? - B. patronus predation and present in                                  |
| invertebrate feeders  |          |     |        |                      |         |         | purse seine bycatch                                                          |
| Benthic coastal       | 1        |     | Х      |                      |         | Х       | Yes? - <i>B. patronus</i> predation, but is this a rare                      |
| invertebrate feeders  |          |     |        |                      |         |         | event?                                                                       |
| Reef invertebrate     | 2        |     |        |                      |         | Х       | No - predation unlikely                                                      |
| feeders               |          |     |        |                      |         |         | . ,                                                                          |
| Coastal omnivores     | 1        |     |        |                      |         | Х       | No - predation unlikely                                                      |
| Anchovy-silversides-  | <1       |     | Х      |                      |         | Х       | No - predation unlikely (consumption of                                      |
| killifish             |          |     |        |                      |         |         | menhaden likely detritus)                                                    |

| Predator                                            | Brevoortia sp. references                                                                                                                                                  | Clupeid references                                                                                               |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Coastal dolphins                                    |                                                                                                                                                                            |                                                                                                                  |
| Bottlenose dolphin<br>( <i>Tursiops truncatus</i> ) | Leatherwood <i>et al.</i> 1975; Barros<br>and Odell 1990; Barros 1992;<br>Barros and Wells 1998;<br>Leatherwood <i>et al.</i> 1978 (Atl);                                  | Barros 1992; Barros and<br>Wells 1998; Mead and<br>Potter 1990 (Atl); Barros<br>1993 (Atl); Santos <i>et al.</i> |
|                                                     | Barros 1993 (Atl); Gannon and<br>Waples 2004 (Atl); Bowen 2011<br>(Atl); Pate and McFee 2012 (Atl)                                                                         | 2007 (All)                                                                                                       |
| Seabirds                                            |                                                                                                                                                                            |                                                                                                                  |
| Osprey                                              | McLean and Byrd 1991 (Atl);                                                                                                                                                | Glass and Watts 2009 (Atl)                                                                                       |
| Black skimmer                                       | Mariano <i>et al.</i> 2007 (Atl); King                                                                                                                                     | -                                                                                                                |
| ( <i>Rynchops niger</i> )<br>Brown pelican          | Fogarty <i>et al.</i> 1981                                                                                                                                                 | -                                                                                                                |
| (Pelecanus occidentalis)                            |                                                                                                                                                                            |                                                                                                                  |
| Double-crested cormorant (Phalacrocorax auritus)    | Withers and Brooks 2004                                                                                                                                                    | Anderson <i>et al.</i> 2004 (Pac)                                                                                |
| Neotropical cormorant<br>(Phalacrocorax olivaceous) | King 1989a                                                                                                                                                                 | -                                                                                                                |
| Common tern                                         | Bugoni and Vooren 2004 (Atl)                                                                                                                                               | -                                                                                                                |
| Common loon<br>Gavia immer                          | GSMFC 2015                                                                                                                                                                 |                                                                                                                  |
| Sea turtles                                         |                                                                                                                                                                            |                                                                                                                  |
| Loggerhead<br>(Caretta caretta)                     | Seney and Musick 2007 (Atl)                                                                                                                                                | -                                                                                                                |
| Kemp's ridley<br>(Lepidochelys kempi)               | Seney 2003 (Atl)                                                                                                                                                           | -                                                                                                                |
| Blacktip shark<br>(Carcharhinus limbatus)           | Hueter 1994; de Silva 2001;<br>Hoffmayer and Parsons 2003;<br>Bethea <i>et al.</i> 2004; Barry <i>et al.</i><br>2008; Wrast 2008; Castro 1996<br>(Atl); Gurshin 2005 (Atl) | Heupel and Heuter 2002                                                                                           |
| <b>Dusky shark</b><br>(Carcharhinus obscurus)       | Clark and von Schmidt 1965; de<br>Silva 2001                                                                                                                               | Smale 1991 (Atl); Bowman<br>et al. 2000 (Atl); Hussey et                                                         |
|                                                     |                                                                                                                                                                            | ai. 2011 (Atl); FWRI FIM                                                                                         |
| Sandbar shark                                       | Clark and von Schmidt 1965: de                                                                                                                                             | Stillwell and Kohler 1993                                                                                        |
| (Carcharhinus plumbeus)                             | Silva 2001; Medved <i>et al.</i> 1985<br>(Atl); McElroy 2009 (Atl); Ellis<br>and Musick 2007 (Atl)                                                                         | (Atl); McElroy 2009 (Atl);<br>Ellis and Musick 2007 (Atl)                                                        |
| Other large coastal sharks                          |                                                                                                                                                                            |                                                                                                                  |
| Bull shark                                          | Darnell 1958; de Silva 2001;                                                                                                                                               | -                                                                                                                |
| (Carcharhinus leucas)                               | Snelson <i>et al.</i> 1984 (Atl)                                                                                                                                           |                                                                                                                  |

| Predator                   | Brevoortia sp. references             | Clupeid references                    |
|----------------------------|---------------------------------------|---------------------------------------|
| Spinner shark              | de Silva 2001; Bethea <i>et al.</i>   | Stevens and McLoughlin                |
| (Carcharhinus brevipinna)  | 2004; Avendano-Alvares et al.         | 1991 (Pac)                            |
|                            | 2013                                  |                                       |
| Silky shark                | de Silva 2001: Bowman <i>et al</i>    | _                                     |
| (Carcharhinus falciformis) | $2000 (A \pm 1)$                      |                                       |
|                            | 2000 (All)                            |                                       |
|                            | Knapp 1950                            | -                                     |
| (Carcharninus sp.)         |                                       |                                       |
| Sand tiger shark           | Clark and von Schmidt 1965;           | -                                     |
| (Carcharias taurus)        | Gelsleichter <i>et al.</i> 1999 (Atl) |                                       |
| Scalloped hammerhead       | Bethea <i>et al.</i> 2011             | Stevens and Lyle 1989                 |
| (Sphyrna lewini)           |                                       | (Pac); Hussey et al. 2011             |
|                            |                                       | (Atl)                                 |
| Great hammerhead           | Hueter 1994                           | -                                     |
| (Sphyrna mokarran)         |                                       |                                       |
| (Spriyma mokanam)          |                                       |                                       |
| Chartfin make              | Ctillwall and Kabler 1000 (Atl)       |                                       |
| Shortfin mako              | Stillweil and Konler 1982 (Atl);      | Maia <i>et al.</i> 2006 (Ati)         |
| (Isurus oxyrinchus)        | Bowman et al. 2000 (Atl); Wood        |                                       |
|                            | <i>et al.</i> 2009 (Atl)              |                                       |
| Atlantic sharpnose shark   | Clark and von Schmidt 1965;           | Clark and von Schmidt                 |
| (Rhizoprionodon            | Barry 2002; Hoffmayer and             | 1965; Davis 2010;                     |
| terraenovae)               | Parsons 2003; Bethea et al.           | Gelsleichter <i>et al.</i> 1999       |
|                            | 2004. 2006: McCallister 2012          | (Atl): Bowman <i>et al.</i> 2000      |
|                            | (Atl)                                 | (Atl)                                 |
| Other small coastal sharks | ()                                    | (*)                                   |
| Blacknose shark            | Ford 2012 (Atl)                       | _                                     |
| (Carabarbinua caranatua)   | 1 010 2012 (All)                      | -                                     |
|                            | de Cilve 2004, Lleffreeuver and       |                                       |
| Finetooth shark            | de Silva 2001; Honmayer and           | -                                     |
| (Carcharhinus isodon)      | Parsons 2003; Bethea et al.           |                                       |
|                            | 2004; Castro 1993 (Atl); Gurshin      |                                       |
|                            | 2005 (Atl)                            |                                       |
| Smooth dogfish             | McElroy 2009 (Atl)                    | Bowman <i>et al.</i> 2000 (Atl)       |
| (Mustelus canis)           | • • • •                               |                                       |
| Dogfish (Squalidae)        | Baughman and Springer 1950            | -                                     |
| Yellowfin tuna             | Rudershausen <i>et al.</i> 2010 (Atl) | Manooch and Mason                     |
| (Thunnus albacaros)        |                                       | 1083: Olson of al. 2014               |
| (Thunnus abacares)         |                                       | (Doc)                                 |
|                            |                                       | (Fac)                                 |
| Bluefin tuna               | Chase 2002 (Atl); Butler 2007         | Orsi Relini <i>et al.</i> 1995 (Ati); |
| (Thunnus thynnus)          | (Atl)                                 | Sinopoli <i>et al.</i> 2004 (Atl);    |
|                            |                                       | Karakulak <i>et al.</i> 2009 (Atl)    |
| Other tunas                |                                       |                                       |
| Blackfin tuna              | -                                     | Manooch and Mason 1983                |
| (Thunnus Atlanticus)       |                                       |                                       |
| Škipiack tuna              | -                                     | Dragovich and Potthoff                |
| (Katsuwonus pelamis)       |                                       | 1972 (Atl)                            |
|                            |                                       | ····/                                 |

| Predator                                                                     | Brevoortia sp. references                                                                           | Clupeid references                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Billfish<br>Sailfish<br>(Istiophorus nigricans)                              | Knapp 1950                                                                                          |                                                                                                                                                                                                                                                           |
| (Nakaira nigricans)<br>(Makaira nigricans)<br>Swordfish<br>(Xiphias gladius) | Stillwell and Kohler 1985 (Atl);<br>Bowman <i>et al.</i> 2000 (Atl)                                 | Abitia-Cardenas <i>et al.</i><br>1999 (Pac)<br>-                                                                                                                                                                                                          |
| <b>Greater amberjack</b><br>(Seriola dumerili)                               | -                                                                                                   | Manooch and Haimovici<br>1983 (Atl); Badalamenti <i>et</i><br><i>al.</i> 1995 (Atl); Matallanas<br><i>et al.</i> 1995 (Atl)                                                                                                                               |
| <b>Cobia</b><br>(Rachycentron canadum)                                       | Meyer and Franks 1996; Arendt<br><i>et al.</i> 2001 (Atl)                                           | Meyer and Franks 1996;<br>Arendt <i>et al.</i> 2001 (Atl);<br>FWRI FIM diet database                                                                                                                                                                      |
| King mackerel<br>(Scomberomorus cavalla)                                     | Knapp 1950; Miles 1949; Kemp<br>1950; DeVane 1978; Saloman<br>and Naughton 1983a                    | Beaumariage 1973;<br>McMichael 1981; Finucane<br><i>et al.</i> 1990; Menezes 1969<br>(Atl); Naughton and<br>Saloman 1981 (Atl);<br>Blanton <i>et al.</i> 1972; Florida<br>Fish and Wildlife<br>Conservation Commission<br>2012; FWRI FIM diet<br>database |
| Spanish mackerel<br>(Scomberomorus<br>maculatus)                             | Knapp 1950; Kemp 1950;<br>Naughton and Saloman 1981;<br>Saloman and Naughton 1983b                  | Naughton and Saloman<br>1981; Finucane <i>et al.</i><br>1990; Klima 1959 (Atl);<br>FWRI FIM diet database                                                                                                                                                 |
| Little tunny<br>( <i>Euthynnus alletteratus</i> )                            | Manooch <i>et al.</i> 1985                                                                          | Manooch <i>et al.</i> 1985                                                                                                                                                                                                                                |
| Crevalle jack<br>( <i>Caranx hippos</i> )                                    | Saloman and Naughton 1984                                                                           | Saloman and Naughton<br>1984; FWRI FIM diet<br>database                                                                                                                                                                                                   |
| Bluefish<br>( <i>Pomatomus saltatrix</i> )                                   | Naughton and Saloman 1984;<br>Bowman <i>et al.</i> 2000 (Atl);<br>Gartland <i>et al.</i> 2006 (Atl) | Buckel <i>et al.</i> 1999 (Atl);<br>FWRI FIM diet database                                                                                                                                                                                                |
| Ladyfish<br>( <i>Elops saurus</i> )                                          | Sekavec 1974                                                                                        | Reid 1955                                                                                                                                                                                                                                                 |
| Common Snook<br>(Centropomus undecimalis)                                    | Blewett <i>et al.</i> 2006; FWRI FIM diet database                                                  | Blewett <i>et al.</i> 2006; Adams<br><i>et al.</i> 2009; Rock 2009;<br>FWRI FIM diet database                                                                                                                                                             |

| Predator                   | Brevoortia sp. references                      | Clupeid references        |
|----------------------------|------------------------------------------------|---------------------------|
| Tarpon                     | Knapp 1950                                     | -                         |
| (Megalops Atlanticus)      |                                                |                           |
| Seatrouts                  |                                                |                           |
| Sand seatrout              | Reid <i>et al.</i> 1954; Moffett <i>et al.</i> | Darnell 1958; FWRI FIM    |
| (Cynoscion arenarius)      | 1979; Kasprzak and Guillory                    | diet database             |
|                            | 1984; Wrast 2008                               |                           |
| Spotted seatrout           | Gunter 1945; Knapp 1950; Day                   | Miles 1949; FWRI FIM diet |
| (Cynoscion nebulosus)      | 1960; Seagle 1969; Rogillio                    | database                  |
|                            | 1975; Overstreet and Heard                     |                           |
|                            | 1982; Russell 2005; Wrast 2008;                |                           |
|                            | Simonsen and Cowan 2013;                       |                           |
|                            | Tabb 1961 (Atl)                                |                           |
| Oceanic piscivores         |                                                |                           |
| Cutlassfish                | -                                              | Portsev 1980 (Indian)     |
| (Trichiurus lepturus)      |                                                |                           |
| Offshore hake              | -                                              | Rohr and Gutherz 1977     |
| (Merluccius albidus)       |                                                |                           |
| Benthic piscivores         |                                                |                           |
| Southern flounder          | Knapp 1950                                     | Diener <i>et al.</i> 1974 |
| (Paralichthys lethostigma) |                                                |                           |
| Gulf flounder              | -                                              | FWRI FIM diet database    |
| (Paralichthys albigutta)   |                                                |                           |
| Inshore lizardfish         | -                                              | Sheridan 2008; Hildebrand |
| (Synodus foetens)          |                                                | 1954; FWRI FIM diet       |
|                            |                                                | database                  |
| Sand diver                 | -                                              | FWRI FIM diet database    |
| (Synodus intermedius)      |                                                |                           |
| Snakefish                  | -                                              | FWRI FIM diet database    |
| (Trachinocephalus myops)   |                                                |                           |
| Reef piscivores            |                                                |                           |
| Great barracuda            | -                                              | Randall 1967 (Caribbean); |
| (Sphyraena barracuda)      |                                                | FWRI FIM diet database    |
| Northern sennet            | -                                              | FWRI FIM diet database    |
| (Sphyraena borealis)       |                                                |                           |
| Gag grouper                | Naughton and Saloman 1985;                     | Naughton and Saloman      |
| (Mycteroperca microlepis)  | Bullock and Smith 1991; Weaver                 | 1985; Weaver 1996         |
|                            | 1996                                           |                           |
| Red grouper                | -                                              | Weaver 1996; FWRI FIM     |
| (Epinephelus morio)        |                                                | diet database             |
| Goliath grouper            | -                                              | Koenig and Coleman 2009   |
| (Epinephelus itajara)      |                                                |                           |

| Predator                    | Brevoortia sp. references        | Clupeid references         |
|-----------------------------|----------------------------------|----------------------------|
| Other shallow-water         |                                  | FWRI FIM diet database     |
| grouper                     |                                  |                            |
| Scamp                       |                                  |                            |
| (Mycteroperca phenax)       |                                  |                            |
| Deep-water grouper          |                                  |                            |
| Snowy grouper               | -                                | Bielsa and Labinsky 1987   |
| (Hyporthodus niveatus)      |                                  | (Atl)                      |
| Tilefish                    |                                  |                            |
| Northern tilefish           | Freeman and Turner 1977 (Atl)    | -                          |
| (Lopholatilus               |                                  |                            |
| chamaeleonticeps)           |                                  |                            |
| Blueline tilefish           | -                                | Bielsa and Labinsky 1987   |
| (Caulolatilus microps)      |                                  | (Atl)                      |
| Red snapper                 | -                                | Futch and Bruger 1976;     |
| (Lutjanus campechanus)      |                                  | Sheridan 2008; FWRI FIM    |
|                             |                                  | diet database              |
| Vermilion snapper           | -                                | FWRI FIM diet database     |
| (Rhomboplites aurorubens)   |                                  |                            |
| Other snapper               |                                  |                            |
| Gray snapper                | FWRI FIM diet database           | FWRI FIM diet database     |
| (Lutjanus griseus)          |                                  |                            |
| Red drum                    | Knapp 1950; Simmons and          | -                          |
| (Sciaenops ocellatus)       | Breuer 1962; Boothby and         |                            |
|                             | Avault 1971; Scharf and Schlicht |                            |
|                             | 2000                             |                            |
| Demersal coastal invertebra | ate feeders                      |                            |
| Black drum                  | Diener <i>et al.</i> 1974        | -                          |
| (Pogonias cromis)           |                                  |                            |
| Silver perch                | Wrast 2008                       | -                          |
| (Bairdiella chrysoura)      |                                  |                            |
| King croaker                | Knapp 1950                       | -                          |
| ( <i>Menticirrhus</i> sp.)  |                                  |                            |
| Atlantic croaker            | Reid 1955                        | Diener <i>et al.</i> 1974; |
| (Micropogonias undulatus)   |                                  | Fontenot and Rogillio 1970 |
| Spot croaker                | Matlock and Garcia 1983          | -                          |
| (Leiostomus xanthurus)      |                                  |                            |
| Gafftopsail catfish         | Knapp 1950; Wrast 2008           | Ruderhausen and            |
| (Bagre marinus)             |                                  | Locascio 2001              |
| Hardhead catfish            | Knapp 1950; Wrast 2008           | -                          |
| (Ariopsis felis)            | <i>.</i> .                       |                            |
| Benthic coastal invertebrat | e teeders                        |                            |
| Southern codling            | Diener et al. 1974               |                            |
| (Urophycis floridana)       |                                  |                            |

| Predator                     | Brevoortia sp. references | Clupeid references            |
|------------------------------|---------------------------|-------------------------------|
| Atlantic threadfin           | Diener et al. 1974        | -                             |
| (Polydactylus octonemus)     |                           |                               |
| Reef invertebrate feeders    |                           |                               |
| Bank sea bass                | -                         | FWRI FIM diet database        |
| (Centropristis ocyurus)      |                           |                               |
| Black sea bass               | -                         | FWRI FIM diet database        |
| (Centropristis striata)      |                           |                               |
| Knobbed porgy                | -                         | Nelson 1988                   |
| (Calamus nodusus)            |                           |                               |
| Cottonwick grunt             | -                         | Nelson 1988                   |
| (Haemulon melanurum)         |                           |                               |
| Gulf toadfish                | -                         | Diener <i>et al.</i> 1974     |
| (Opsanus beta)               |                           |                               |
| Yellowtail snapper           | -                         | Rincon-Sandoval <i>et al.</i> |
| (Ocyurus chrysurus)          |                           | 2009                          |
| Lane snapper                 | -                         | FWRI FIM diet database        |
| (Lutjanus synagris)          |                           |                               |
| Coastal omnivores            |                           |                               |
| Least puffer                 | -                         | Diener <i>et al.</i> 1974     |
| (Sphoeroides parvus)         |                           |                               |
| Anchovies-silversides-killif | ish                       |                               |
| Gult killifish               | Rozas and LaSalle 1990    | -                             |
| (Fundulus grandis)           |                           |                               |
| Inland silverside            | Levine 1980               | -                             |
| (Menidia beryllina)          |                           |                               |

Appendix 3 – Ecosim calibration parameters



Figure S3.1. Primary Production (PP) anomaly time series. PP anomaly represents the temporal variation in the system's primary productivity. PP anomaly is produced by the Ecosim's automatic fitting routine based on minimizing the SSE using an iterative search algorithm (Christensen *et al.*, 2005).

Table S3.1. Predation Vulnerability matrix from the base Ecosim run. Columns and rows represent predators and prey, respectively.

| Brow bredstor                            | 1     | 2    | 2    | 4     |     | 6    | 7    | 0   | 0     | 10     | 11   | 12 | 12     |
|------------------------------------------|-------|------|------|-------|-----|------|------|-----|-------|--------|------|----|--------|
| Prey (predator                           | T     | Z    | 3    | 4     | Э   | 0    | /    | ٥   | 9     | 10     | 11   | 12 | 15     |
| 1 Coastal dolphins                       | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | -      | -    | -  | -      |
| 2 Offshore dolphins                      | -     | -    | -    | -     | -   | 2    | 2    | -   | -     | 2      | -    | -  | -      |
| 3 Baleen whales                          | -     | -    | -    | -     | -   | -    | -    | -   | -     | 2      | -    | -  | -      |
| 1 Seabird                                | _     |      | _    | 2     | _   | -    | 2    | _   | 2     | 2      |      | -  |        |
| 4 Seablid                                | _     |      |      | 2     |     |      | 2    |     | 2     | 2      |      |    |        |
| 5 Sea turtie                             | -     | -    | -    | -     | -   |      | 2    |     | 2     | 2      | -    | -  | -      |
| 6 Blacktip shark                         | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | -    | -  | -      |
| 7 Dusky shark                            | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | -    | -  | -      |
| 8 Sandbar shark                          | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2.67   | -    | -  | -      |
| 9 Large coastal sharks                   | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | -    | -  | 2      |
| 10 Large oceanic sharks                  |       |      |      |       |     | -    | -    | 2   | 6 1 4 | 1 05   |      |    | -      |
| to targe oceanic sharks                  |       | -    | -    | -     | -   |      | 2    | 2   | 0.14  | 1.03   |      |    | -      |
| 11 Atlantic sharphose shark              | 2     | -    | -    | -     | 2   | 2    | 2    | 2   | 2     | 2      | 5.6  | 2  | -      |
| 12 Small coastal sharks                  | 2     | -    | -    | -     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | -      |
| 13 Yellowfin tuna                        |       |      |      |       |     | 10.  |      |     |       |        |      |    |        |
|                                          | -     | -    | -    | -     | -   | 01   | 1.05 | 2   | 1.1   | 2      | -    | -  | 1.05   |
| 14 Bluefin tuna                          | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | -    | -  | 1 05   |
| 15 Other tupas                           |       |      |      |       |     | 2    | 2    | 2   | 1 1   | -      |      |    | 1.05   |
|                                          | -     | -    | -    | -     | -   | 2    | 2    | 2   | 1.1   | 2      | -    | -  | 1.03   |
| 16 BIIITISH                              | -     | -    | -    | -     | -   | -    | 2    | -   | 2     | 2      | -    | -  | 5.68   |
| 17 Swordfish                             | -     | -    | -    | -     | -   | -    | 1.05 | -   | 1.1   | 5.65   | -    | -  | 15.96  |
| 18 Pelagic coastal piscivores            | 2     | 2    | 2    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 22.7   |
| 19 Amberjack                             | 2     | 2    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 20 Cobia                                 | 2     | 2    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 20 CODia<br>21 King maskeral (0, 1) (r)  | 2     | 2    |      | 2     |     | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 21 King mackerel (0-1yr)                 | 2     | -    | -    | Z     | -   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 22 King mackerel (1+yr)                  | 2     | 2    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 23 Spanish mackerel (0-1yr)              | 2     | -    | -    | 2     | -   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 24 Spanish mackerel (1+yr)               | 2     | 2    | -    | -     | -   | 5.17 | 2    | 2   | 2     | 2      | 2    | 2  | 57.52  |
| 25 Skates-rays                           | 2     | 2    | -    | -     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | -      |
| 26 Gag groupor (0 2vr)                   | -     | -    |      | 2     | -   | 2    | 2    | -   | -     | -      | -    | -  | 2      |
| 20 Gag grouper (0-5yr)                   | -     | -    | -    | 2     | -   | 2    | 2    | -   | 2     | -      | -    | -  | 2      |
| 27 Gag grouper (3+yr)                    | -     | -    | -    | -     | -   | 2    | 2    | -   | 2     | -      | -    | -  | 2      |
| 28 Red grouper (0-3yr)                   | -     | -    | -    | 2     | -   | 2    | 2    | -   | 12.41 | -      | -    | -  | 2      |
| 29 Red grouper (3+yr)                    | -     | -    | -    | -     | -   | 2    | 2    | -   | 2     | -      | -    | -  | 2      |
| 30 Yellowedge grouper (0-3vr)            | -     | -    | -    | -     | -   | -    | 2    | -   | 2     | -      | -    | -  | -      |
| 31 Vellowedge grouper (3+vr)             | _     |      | _    | _     | _   | -    | 2    | _   | 2     | _      |      | -  | 2      |
| 22 Caliath answers                       | _     |      |      | -     |     | 2    | 2    |     | 2     |        |      |    | 2      |
| 32 Gollath grouper                       | -     | -    | -    | 2     | -   | 2    | 2    | -   | 2     | -      | -    | -  | 2      |
| 33 Deep-water grouper                    | -     | -    | -    | -     | -   | -    | 2    | -   | 2     | -      | -    | -  | 2      |
| 34 Shallow-water grouper                 | -     | -    | -    | 2     | -   | 2    | 2    | -   | 2     | -      | -    | 2  | 2      |
| 35 Red snapper (Oyr)                     | -     | -    | -    | -     | -   | 2    | -    | 2   | 2     | -      | 2    | -  | 2      |
| 36 Red snapper (1-2vr)                   | -     | -    | -    | -     | -   | 2    | -    | 2   | 2     | -      | 2    | -  | 2      |
| 37 Red snapper (3+yr)                    |       |      |      |       |     | 2    |      | 2   | -     | 2      | 2    |    |        |
|                                          | -     | -    | -    | -     | -   | 2    | -    | 2   | 2     | 2      | 2    | -  | 2      |
| 38 vermilion snapper                     | -     | -    | -    | -     | -   | 2    | -    | 2   | 2     | 2      | 2    | -  | 2      |
| 39 Mutton snapper                        | -     | -    | -    | -     | -   | 2    | -    | 2   | 2     | 2      | 2    | -  | 2      |
| 40 Other snapper                         | -     | -    | -    | -     | -   | 2    | -    | 2   | 2     | 2      | 2    | -  | 2      |
| 41 Coastal piscivores                    | 1.05  | -    | -    | 1.05  | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | -      |
| 12 Sea trout                             | 2     |      | _    | 2     | 2   | 636  | 2    | 2   | 2     |        | 2    | 2  |        |
| 42 Sed trout                             | 2     | -    | -    | 2     | 2   | 0.30 | 2    | 2   | 2     | ~      | 2    | 2  |        |
| 43 Oceanic piscivores                    | 2     | 2    | -    | 2     | -   | 1.05 | 2    | 2   | 2     | 31.44  | 1.05 | 2  | 1.05   |
| 44 Benthic piscivores                    | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 45 Reef piscivores                       | -     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | 1.05 | 2  | 2      |
| 46 Reef invertebrate feeders             | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 47 Demersal coastal invertebrate feeders | 2     |      | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 49 Pod drum                              | 2     |      |      | 2     | 2   | 2    | 2    | -   | 2     | 2      | 2    | 2  | -      |
|                                          | 2     | -    | -    | -     | -   | 2    | -    | -   | 2     | -      | 2    | -  | -      |
| 49 Benthic coastal invertebrate feeders  | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 50 Tilefish                              | -     | -    | -    | -     | -   | -    | -    | -   | -     | 2      | -    | -  | 1.05   |
| 51 Gray triggerfish                      | 2     | -    | -    | -     | -   | 2    | 2    | 2   | 2     | 2      | -    | -  | 2      |
| 52 Coastal omnivores                     | 2     | -    | -    | 2     | -   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 252.55 |
| 53 Reef omnivores                        | 2     |      |      | 2     |     | 2    | 2    | 2   | 2     | -      | _    | 2  | 159.05 |
| 53 Reef official values                  | 2     | -    | -    | 2     | -   | 2    | 2    | 2   | 2     | 447.00 | -    | 2  | 138.05 |
| 54 Surface pelagics                      | 2     | 2    | -    | Z     | -   | 2    | Z    | 2   | 2     | 147.88 | -    | -  | 1.05   |
| 55 Large oceanic planktivores            | -     | -    | -    | -     | -   | -    | -    | -   | 2     | 2      | -    | -  | 2      |
| 56 Oceanic planktivores                  | 2     | 2    | 2    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | -    | -  | 16.89  |
| 57 Sardine-herring-scad                  |       | 32.  |      |       |     | 33.  |      |     |       |        |      |    |        |
|                                          | 25.02 | 4    | 2    | 16.27 | 2   | 7    | 2    | 2   | 2     | 376.34 | 1.05 | 2  | 1357.8 |
| 58 Menhaden (Ovr)                        |       |      | -    | 2     | -   |      | -    | -   | -     |        |      | -  |        |
| 50 Menhaden (1)rr)                       | 2     |      |      | 2     | 2   | 2    | 2    | 2   | 2     |        | 2    | 2  |        |
| So Markaden (191)                        | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | -      | 2    | 2  | -      |
| 60 Menhaden (2yr)                        | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 61 Menhaden (3yr)                        | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 62 Menhaden (4+yr)                       | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 63 Anchovy-silverside-killifish          | 2     | 2    | 2    | 2     | 2   | 1.05 | 2    | 11  | 2     | 1.05   | 2    | 2  | 2      |
| 64 Mullet                                | 2     | -    | -    | -     | 2   | 2.05 | 2    | 2   | -     | 2.05   | 2    | 2  |        |
| of Mullet                                | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 65 Butterfish                            | 2     | 2    | 2    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 66 Cephalopod                            |       |      |      |       |     |      |      |     |       |        |      |    | 2997.7 |
|                                          | 2     | 1.05 | 1.05 | 48.59 | 2   | 2    | 2    | 2   | 2     | 318.73 | 1.05 | 2  | 8      |
| 67 Pink shrimp                           | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 68 Brown shrimp                          | 2     | -    |      | 2     | - 2 | 2    | 2    | 2   | 2     | 2      | - 2  | 2  | 2      |
| 60 White chrimp                          | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
|                                          | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 70 Crab                                  | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 71 Sessile epifauna                      |       | -    | -    | 2     | 2   | -    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 72 Mobile epifauna                       | 2     | -    | 2    | 2     | 2   | 2    | 2    | 1.1 | 2     | 2      | 1.05 | 2  | 2      |
| 73 Zooplankton                           | 2     | 2    | 2    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 74 Infauna                               | 2     | 2    | 4    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 1 05 | 2  | 2      |
|                                          | 2     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 1.05 | 2  | 2      |
| 75 Algae                                 | 2     | -    | -    | -     | 2   | 2    | -    | 2   | 2     | 2      | 2    | 2  | 2      |
| 76 Seagrass                              | -     | -    | -    | 2     | 2   | 2    | 2    | 2   | 2     | 2      | 2    | 2  | 2      |
| 77 Phytoplankton                         |       | -    | -    | -     | -   | -    | -    | -   | -     | -      | -    | -  | -      |
| 78 Detritus                              | 2     | 2    | -    | 2     | -   | 1.05 | 2    | 2   | 2     | 1E+10  | 1.05 | 2  | 1.1    |

Table S3.1-Continued. Predation Vulnerability matrix from the base Ecosim run. Columns and rows represent predators and prey, respectively.

| Prev \ predator                          | 14             | 15        | 16        | 17    | 18        | 19                     | 20   | 21   | 22        | 23     | 24   | 25  | 26 |
|------------------------------------------|----------------|-----------|-----------|-------|-----------|------------------------|------|------|-----------|--------|------|-----|----|
| 1 Coastal dolphins                       |                |           |           |       |           |                        |      |      |           |        |      |     |    |
| 2 Offshore dolphins                      |                | 2         | _         |       |           |                        |      | _    |           |        | _    |     | _  |
| 2 Offshore dolprints<br>2 Paleon whales  | -              | 2         | -         | -     | -         | -                      | -    | -    |           | -      | -    | -   |    |
| 5 Baleeli Wilales                        | -              | -         | -         | -     | -         | -                      | -    | -    |           | -      | -    | -   |    |
|                                          | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 5 Sea turtle                             | -              | -         | 2         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 6 Blacktip shark                         | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 7 Dusky shark                            | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 8 Sandbar shark                          | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 9 Large coastal sharks                   | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 10 Large oceanic sharks                  | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 11 Atlantic sharpnose shark              | -              | -         | -         | -     | -         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 12 Small coastal sharks                  | 2              | -         | -         | 2     | -         | -                      | 2    | -    |           | -      | -    | -   | -  |
| 13 Vellowfin tuna                        | _              |           |           | _     | 20        |                        | _    |      | 10        |        |      |     |    |
| 15 Tellowilli tulla                      | 2              | 1.05      | 2         | 10.96 | 20.       |                        | 1.05 |      | 10.<br>66 |        |      |     |    |
| 14 Divefinition                          | 2              | 1.05      | 2         | 100   | 21        | -                      | 1.05 | -    | 00        | -      | -    | -   | -  |
| 14 Biuerin Luna                          | 2              | 2         | 1 05      | 1.05  | -         | -                      | 2    | -    | 2         | -      | -    | -   | -  |
| 15 Other tunas                           | 2              | 2         | 1.05      | 1.05  | 2         | -                      | 2    | -    | 2         | -      | -    | -   | -  |
| 16 Billfish                              | -              | 2         | 2         | -     | 2         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 17 Swordfish                             | -              | 2         | 2         | -     | -         | -                      | -    | -    |           | -      | -    | -   | -  |
| 18 Pelagic coastal piscivores            | 2              | 2         | 1.05      | 1.05  | 2         | 2                      | 2    | -    | 2         | -      | 2    | 2   | -  |
| 19 Amberjack                             | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | -    | 2         | -      | 2    | 2   | -  |
| 20 Cobia                                 | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | -    | 2         | -      | 2    | 2   | -  |
| 21 King mackerel (0-1yr)                 | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | -    | 2         | -      | 2    | 2   | -  |
| 22 King mackerel (1+yr)                  | 2              | 2         | 2         | 2     | 1.05      | 2                      | 2    | -    | -         | -      | 1.05 | -   | -  |
| 23 Spanish mackerel (0-1vr)              | 2              | 2         | 2         | 2     | 2         | 1.01                   | 2    | -    | 2         | -      | 2    | 2   | -  |
| 24 Spanish mackerel (1+vr)               | 2              | 2         | 2         | 2     | 2         | 2.01                   | 2    | -    | 2         |        | -    | -   | -  |
| 25 Skates-rays                           | 2              | 2         | -         | 2     | -         | 1 01                   | 2    | _    | -         | _      | _    | 2   | -  |
| 26 Gag grouper (0.200)                   | 2              | -<br>1    | -<br>ว    | 2     | -<br>ว    | 1.01                   | 2    | -    |           | -      |      | 2   |    |
|                                          | 2              | 2         | 2         | -     | 2         | 4 50                   | 2    | -    | 2         | -      | -    | -   | 2  |
| 27 Gag grouper (3+yr)                    | 2              | 2         | 2         | -     | 2         | 1.59                   | 2    | -    | 2         | -      | -    | -   | -  |
| 28 Red grouper (0-3yr)                   | 2              | 2         | 2         | -     | 2         | 1.1                    | 2    | -    | 2         | -      | -    | -   | 2  |
| 29 Red grouper (3+yr)                    | 2              | 2         | 2         | -     | 4.05      | 1.36                   | 2    | -    | 2         | -      | -    | -   | -  |
| 30 Yellowedge grouper (0-3yr)            | 2              | 2         | 2         | -     | -         | 2                      | -    | -    | -         | -      | -    | -   | 2  |
| 31 Yellowedge grouper (3+yr)             | 2              | 2         | 2         | -     | 1.05      | 1.91                   | 2    | -    | -         | -      | -    | -   | -  |
| 32 Goliath grouper                       | 2              | 2         | 2         | -     | 2         | 2                      | 2    | -    | 2         | -      | -    | -   | 2  |
| 33 Deep-water grouper                    | 2              | 2         | 2         | -     | 2         | 2                      | 2    | -    |           | -      | -    | -   | -  |
| 34 Shallow-water grouper                 | 2              | 2         | 2         | -     | 2         | 1 08                   | 1 05 |      | 2         | -      | -    |     | 2  |
| 35 Red snapper (Ovr)                     | -              | 2         | 2         | _     | 2         | 1.00                   | 1.05 |      | 2         | _      | _    | 2   | -  |
| 26 Bed snapper (UVI)                     | -              | 2         | 2         | -     | 2         | 2                      | 2    | -    | 2         | -      | -    | 2   |    |
| So Red Shapper (1-2yr)                   | -              | 2         | 2         | -     | 2         | 2                      | 2    | -    | 2         | -      | -    | 2   | -  |
| 37 Red snapper (3+yr)                    | -              | 2         | 2         | -     | 2         | 2                      | 2    | -    | 2         | -      | -    | 2   | -  |
| 38 Vermilion snapper                     | -              | 2         | 2         | -     | 2         | 2                      | -    | -    | 2         | -      | -    | 2   | 2  |
| 39 Mutton snapper                        | -              | 2         | 2         | -     | 2         | 2                      | -    | -    | 2         | -      | -    | 2   | 2  |
| 40 Other snapper                         | -              | 2         | 2         | -     | 2         | 1.09                   | -    | -    | 2         | -      | -    | 2   | 2  |
| 41 Coastal piscivores                    | 2              | 2         | 2         | -     | 1.05      | -                      | 2    | -    | 2         | 2      | 2    | 2   | 2  |
| 42 Sea trout                             | 2              | 2         | 2         | -     | 2         | -                      | 2    | -    | 2         | 2      | 2    | 2   | -  |
| 43 Oceanic piscivores                    | 2              | 80.66     | 176.99    | 1.05  | 8.58      | -                      | 2    | -    | 2         | -      | 2    | -   | -  |
| 44 Benthic niscivores                    | 2              | 200.00    | 270.55    | 1.05  | 2         | 1 01                   | 2    | 2    | 2         | -      | 2    | 2   | 2  |
| 45 Reef niscivores                       | 2              | 40.18     | 2         | 10.35 | 2         | 1.01                   | -    | -    | 2         | _      | -    | -   | -  |
| 45 Reel piscivoles                       | 2              | 40.18     | 407.67    | 10.55 | 2         | 2 77                   | -    | -    | 2         | -      | -    | -   | -  |
| 46 Reef Invertebrate feeders             | 2              | 201.75    | 497.67    | 1.05  | 2         | 2.77                   | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 47 Demersal coastal invertebrate feeders | 2              | 216.11    | 2         | 1.05  | 2         | 3.35                   | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 48 Red drum                              | -              | -         | -         | -     | 2         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 49 Benthic coastal invertebrate feeders  | 1.05           | 403.35    | 2         | 1.05  | 2         | 2                      | 2    | 2    | 2         | 2      | 1.05 | 2   | 2  |
| 50 Tilefish                              | -              | -         | -         | -     | -         | -                      | -    | -    | 2         | -      | -    | -   | -  |
| 51 Gray triggerfish                      | 2              | 52.91     | 2         | 2     | 2         | 2                      | 2    | -    | 2         | -      | -    | -   | -  |
| 52 Coastal omnivores                     | 2              | 138.01    | 2         | 1.05  | 2         | 2                      | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 53 Reef omnivores                        | 2              | 58.44     | 2         | 44.01 | 2         | 2                      | 2    | -    | 2         | -      | 2    | 2   | 2  |
| 54 Surface pelagics                      | 2              | 86.66     | 2         | 1.05  | 9 32      | 2                      | _    | -    | 2         | -      | 9.48 | 2   | -  |
| 55 Large oceanic planktivores            | - Î            | 1 05      | 2         |       | 2.52      | -                      | -    | -    | -         | -      | -    | -   | -  |
| 56 Oceanic planktivoros                  |                | 22 50     | 2<br>2    | 1.05  | 2         | 1 6 7                  | -    | -    | -         | -      | -    | -   | -  |
| 50 Oceanic planktivores                  | 2 <sup>2</sup> | 33.36     | 2         | 1.05  | 2         | 1.02                   | -    | 2    |           | -      | -    | 2   | -  |
| 57 Sarume-nerring-SCad                   |                | 107.00    | 24.04 62  | 1.05  |           | 2.22                   | 4.05 | ~    | 12.       | -      | 14.  | ~   | ~  |
| 5014 1 (0)                               | 1.05           | 18/.38    | 2101.69   | 1.05  | 1.05      | 2.32                   | 1.05 | 2    | 4         | 2      | /    | 2   | 2  |
| 58 Menhaden (Uyr)                        | -              |           | -         | -     | -         |                        | -    | -    | -         | -      |      | -   |    |
| 59 Menhaden (1yr)                        | -              | 2         | -         | -     | 2         | 2                      | 2    | 2    | 1.1       | 2      | 1.05 | -   | 2  |
| 60 Menhaden (2yr)                        | 2              | 2         | 9755.84   | 1.05  | 2         | 2                      | 2    | 2    | 1.1       | 2      | 2    | -   | 2  |
| 61 Menhaden (3yr)                        | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | 2    | 1.1       | 2      | 1.05 | -   | 2  |
| 62 Menhaden (4+yr)                       | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | 2    | 1.1       | 2      | 1.05 | -   | 2  |
| 63 Anchovy-silverside-killifish          |                |           |           |       |           |                        |      | 958. |           |        |      |     |    |
|                                          | 2              | 1.05      | 3910.58   | 1.05  | 1.05      | 1.01                   | 1.05 | 61   | 1.1       | 255.71 | 1.05 | 2   | 2  |
| 64 Mullet                                | 2              | 410 74    | 22 _ 5.00 |       | 2.05      | 3 45                   | 2.00 | 2    | 2         | 222.02 | 2.00 | 2   | -  |
| 65 Butterfish                            | 2              | 127.62    | 2         | 1.05  | 2         | 3. <del>-</del> 5<br>7 | 2    | 2    | 2         | 2      | 2    | 2   | -  |
| 66 Cenhalonod                            | 2              | 2255 02   | 1 05      | 1.05  | <br>1 ∩⊏  | 38 16                  | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 67 Bink shrimp                           |                | 2000.92   | c۲        | 1.05  | 1.05<br>2 | JO.40<br>n             | 2    | 4    | 2         | 2      | 2    | 2   | 2  |
| 07 PHIK SHITHP                           | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 68 Brown snrimp                          | 2              | 2         | 2         | 2     | 2         | 2                      | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 69 White shrimp                          | 2              | 3691.67   | 2         | 2     | 2         | 2                      | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 70 Crab                                  | 2              | 795.44    | 2         | 2     | 2         | 2                      | 1.05 | -    | 2         | 2      | 2    | 2   | 2  |
| 71 Sessile epifauna                      |                | 37018.1   |           |       |           |                        |      |      |           |        |      |     |    |
|                                          | 2              | 1         | 2         | -     | 2         | 2                      | 2    | -    | -         | -      | -    | 2   | 2  |
| 72 Mobile epifauna                       |                | 49473.7   | 194191.   |       |           |                        |      |      |           |        |      |     |    |
| -                                        | 2              | 8         | 7         | 1.05  | 2         | 54.67                  | 2    | 2    | 1.1       | 2      | 2    | 1.1 | 2  |
| 73 Zooplankton                           |                | 86045.3   |           |       | -         | 1678.2                 | -    | -    |           | -      | -    |     | -  |
|                                          | n              | ioio<br>n | Э         | 1.05  | э         | <u>م</u>               | э    | э    | 2         | э      | э    | 2   | 2  |
| 74 Infauna                               | 2 <sup>2</sup> | 112000    | 2         | 1.05  | 2         | 7<br>1722 E            | 2    | 2    | 2         | 2      | 2    | 2   | 2  |
| 74 IIIIdulla                             |                | 112002    | h         | h     | n         | 1/00.0                 | n    |      | n         | n      | n    | n   | n  |
| 75 Aleee                                 | 2              | 4         | 2         | 2     | 2         | 5                      | 2    | -    | 2         | 2      | 2    | 2   | 2  |
| 75 Algae                                 | 2              | 2128495   | 2         | -     | 2         | -                      | -    | -    | -         | -      | -    | 2   | 2  |
| /b Seagrass                              | 2              | -         | 2         | 2     | 2         | 2                      | -    | -    | 2         | -      | -    | 2   | 2  |
| 77 Phytopiankton                         | -              | 45.46     | -         | -     | 2         | -                      | -    | -    | -         | -      | -    | -   | -  |
| 78 Detritus                              | 2              | 16+10     | 5.24      | 1.05  | 1.05      | 2                      | 2    | 2    | 2         | 2      | 2    | 1.1 | 2  |

Table S3.1-Continued. Predation Vulnerability matrix from the base Ecosim run. Columns and rows represent predators and prey, respectively.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drout) produtor                            | 27    | 20    | 20    | 20   | 21     | 22     | 22   | 24    | 25       | 26    | 27            | 20       | 20    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|-------|-------|------|--------|--------|------|-------|----------|-------|---------------|----------|-------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prey \ predator                            | 27    | 28    | 29    | 30   | 51     | 32     | 33   | 54    | 30       | 30    | 37            | 30       | 39    |
| 2 Offbors doubles       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Coastal dolphins                         | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| Better nishis         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 Offshore dolphins                        | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 4 schold       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 Baleen whales                            | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| Solution         Solution         Image: solution of the solution of           | 4 Seabird                                  | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 6         Backtig havk         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>5 Sea turtle</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>2</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 Sea turtle                               | -     | -     | -     | -    | -      | 2      | -    | -     | -        | -     | -             | -        | -     |
| Today back         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 Blacktip shark                           | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| Bisendovinski         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 Dusky shark                              | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| • Improvement bank         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 Sandhar shark                            | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| Diage costs sharts         Interfectore sharts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 Large coastal sharks                     |       | -     | -     | _    | -      | -      | -    | -     | -        | -     | -             |          | -     |
| In Address stampones         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 Large essenis sharks                    |       |       |       |      |        |        |      |       |          |       |               |          |       |
| 12 South Constrain Anima         2         0.52         2         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 Large Oceanic Sharp as shark            | 2     | -     | 6 02  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| Instructions of the second | 11 Atlantic snarphose snark                | 2     | -     | 0.93  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 Small coastal sharks                    | 2     | -     |       | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 Yellowfin tuna                          | 1.1   | -     | 5.05  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| Li Diber Junia       22.69       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 Bluefin tuna                            | 1.1   | -     | 1.05  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| 15       Builting       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 Other tunas                             | 22.69 | -     | 1.05  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| 12       Sourdify       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 Billfish                                | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 18 Pelagic costal pictores       2       -       2       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2<< td=""><td>17 Swordfish</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th2<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 Swordfish                               | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 19         Andeejjack         2         -         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th< td=""><td>18 Pelagic coastal piscivores</td><td>2</td><td>-</td><td>2</td><td>-</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>-</td><td>2</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 Pelagic coastal piscivores              | 2     | -     | 2     | -    | 2      | 2      | 2    | 2     | 2        | 2     | -             | 2        | -     |
| 2         2         2         2         2         2         2         2         2         2         1         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 Amberiack                               | 2     | -     | 2     | -    | 2      | 2      | 2    | 2     | 2        | 2     | -             | 2        | -     |
| number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 Cobia                                   | 2     | -     | 2     | _    | 2      | 2      | 2    | 2     |          | -     | -             | 2        | -     |
| 22 Ding mackered (1-yn)       2       -       2       -       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>20 Cobia<br/>21 King mackarol (0, 1)rr)</td> <td>2</td> <td>_</td> <td>2</td> <td>_</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>_</td> <td>_</td> <td>_</td> <td>2</td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 Cobia<br>21 King mackarol (0, 1)rr)     | 2     | _     | 2     | _    | 2      | 2      | 2    | 2     | _        | _     | _             | 2        | _     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21 King maakaral (1 um)                    | 2     | -     | 2     | -    | -      | 2      | -    | -     | -        | -     | -             | -        | -     |
| 2 spannin madzetti (u-yn)       2       -       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 King mackerer (1+yr)                    | 2     | -     | 2     | -    | -      | 2      | -    | -     | -        | -     | -             | -        | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23 Spanish mackerel (0-1yr)                | 2     | -     | 2     | -    | -      | 2      | -    | -     | -        | -     | -             | -        | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24 Spanish mackerel (1+yr)                 | 2     | -     | 2     | -    | -      | 2      | -    | -     | -        | -     | -             | -        | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 Skates-rays                             | 2     | -     | 2     |      | 2      | 2      |      | -     | -        | -     | -             | -        | -     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26 Gag grouper (0-3yr)                     | 2     | 2     | 2     | 2    | 2      | 2      | 2    | 2     | 2        | 2     | 2             | -        | 2     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Gag grouper (3+yr)                      | 2     | -     | 1.05  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 Red grouper (0-3yr)                     | 2     | 2     | 2     | 2    | 2      | 2      | 2    | 2     | 14.13    | 2     | 2             | -        | 9.88  |
| B) Velowege grouper (0.3yr)         2         2         2         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         2         -         -         2         2         -         -         2         2         -         -         2         2         -         -         2         2         -         -         2         2         -         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 Red grouper (3+vr)                      | 1.1   | -     | 1.05  | -    | 2      | 2      | -    | -     | -        | -     | -             | -        | -     |
| 11       12       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 Yellowedge grouper (0-3vr)              | 2     | 2     | 2     | 2    | 2      | -      | -    | 2     | 2        | -     | -             | -        | 2     |
| 22 Onlah grouper       2       105       2       2       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31 Vellowedge grouper (3+vr)               | -     | -     | -     | -    | 2      | -      | 2    | -     | -        | -     | -             | -        | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 Goliath grouper                         | 2     | 1.05  | 2     | 2    | -      | 2      | -    | 2     | 2        | 2     | 2             |          | 2     |
| 35 Statistics provides provides appendix of provides | 32 Gonath grouper                          | 2     | 1.05  | 2     | 2    | 2      | 2      | 2    | 2     | 2        | 2     | 2             | -        | 2     |
| 3 3 Addition-Water grouper       12       5.1.2       1.1.63       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 Deep-water grouper                      | 2     | F0 12 | 17.02 | 2    | 2      | -      | 2    | 25.24 | -        | -     | 2             | -        | 1 00  |
| 35 Ned snapper (Vyr)       -       -       2       -       -       2       -       -       2       -       -       2       -       2       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34 Shallow-water grouper                   | Z     | 58.12 | 17.65 | Z    | 2      | Z      | Z    | 35.24 | 2        | 2     | Z             | -        | 1.99  |
| Bit Red snapper (3yr)       -       -       2       -       -       2       -       -       -       2       2       -       1.05       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 </td <td>35 Red snapper (0yr)</td> <td>-</td> <td>-</td> <td>2</td> <td>-</td> <td>2</td> <td>-</td> <td>-</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>-</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35 Red snapper (0yr)                       | -     | -     | 2     | -    | 2      | -      | -    | 2     | 2        | 2     | -             | -        | 2     |
| 37 Red snapper       1.1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 Red snapper (1-2yr)                     | -     | -     | 2     | -    | 2      | -      | -    | 2     | 2        | 2     | -             | -        | 2     |
| Bay Vermition snapper       1.1.       2       2.4.2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       <th2< td=""><td>37 Red snapper (3+yr)</td><td>-</td><td>-</td><td>2</td><td>-</td><td>2</td><td>2</td><td>-</td><td>1.05</td><td>-</td><td>-</td><td>2</td><td>-</td><td>-</td></th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 Red snapper (3+yr)                      | -     | -     | 2     | -    | 2      | 2      | -    | 1.05  | -        | -     | 2             | -        | -     |
| 39 Mutton snapper       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1       2       1       2       1       2       1       2       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38 Vermilion snapper                       | 1.1   | 2     | 12.42 | 2    | 2      | 2      | 2    | 2     | 2        | 2     | 2             | 2        | 2     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39 Mutton snapper                          | 2     | 2     | 2     | 2    | -      | 2      | 2    | 2     | 2        | 2     | 2             | -        | 2     |
| 41 Coastal pickovers       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 Other snapper                           | 2     | 2     | 2     | 2    | 2      | 2      | 2    | 2     | 2        | 2     | 2             | -        | 2     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41 Coastal piscivores                      | -     | 2     | -     | 2    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 43 Oceanic pictorores         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42 Sea trout                               | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 44 Benthic pistovers         2         2         2.86         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         1.05         1.05         2         2         2         1.05         2         2         2         1.05         2         2         2         1.05         2         2         2         2         1.05         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43 Oceanic niscivores                      | -     | -     | -     | -    | 2      | -      | -    | -     | 1 05     | 9 09  | 2             | 2        | -     |
| 4 Bet Num packnows       2       1.08       2       2       2       1.05       2       2       1.05       2       2       1.05       2       2       1.05       2       2       1.05       2       2       1.05       1.05       2       2       1.05       1.05       2       2       2       1.05       1.05       2       2       2       1.05       1.05       2       2       2       1.05       1.05       2       2       2       2       1.05       1.05       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43 Oceanic piscivores                      | 2     | 2     | 2 86  | 2    | 2      | _      | 2    | 2     | 2.05     | 2.05  | 2             | 2        | 2     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44 Bentinic piscivores                     | 2     | 2     | 2.00  | 2    | 2      | 2      | 2    | 1 05  | 1 05     | 2     | 2             | -        | 2     |
| 40 Reef invertebrate feeders       2       1.05       1.05       2       2       3.02       2.01.3       2       1.2.2       2       -       1.3         47 Demersal costal invertebrate feeders       2       1.13       10.05       2       2       2       2       1.05       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 Reel piscivores                         | 2     | 1 05  | 9.0   | 2    | 2      | F 6 2  | 2    | 20.12 | 1.05     | 12.22 | 2             | -        | 1 00  |
| 47 Demersial costal invertebrate feeders       2       2       0       0.15       2       2       2       1.05       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <t< td=""><td>46 Reef Invertebrate reeders</td><td>2</td><td>1.05</td><td>1.05</td><td>2</td><td>2</td><td>202</td><td>2</td><td>20.15</td><td>2</td><td>12.22</td><td>2</td><td>-</td><td>1.99</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46 Reef Invertebrate reeders               | 2     | 1.05  | 1.05  | 2    | 2      | 202    | 2    | 20.15 | 2        | 12.22 | 2             | -        | 1.99  |
| 48 Red drum       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <th< td=""><td>47 Demersal coastal invertebrate feeders</td><td>2</td><td>2</td><td>6.15</td><td>2</td><td>2</td><td>2</td><td>2</td><td>1.05</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47 Demersal coastal invertebrate feeders   | 2     | 2     | 6.15  | 2    | 2      | 2      | 2    | 1.05  | 2        | 2     | 2             | 2        | 2     |
| 49 Benthic costal invertebrate feeders       2       113       10.55       2       2       2       30.21       2       15.87       13.81       2       2         SD Tilfish       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       10.5       30.21       2       10.5       10.5       10.6       10.6       10.6       10.6       10.6       10.6       10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48 Red drum                                |       |       |       |      |        | -      |      |       | -        | -     |               |          | -     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49 Benthic coastal invertebrate feeders    | 2     | 113   | 10.55 | 2    | 2      | 2      | 2    | 30.21 | 2        | 15.87 | 13.81         | 2        | 2     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 Tilefish                                | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 52 Coastal onnivores       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       <th2< th=""></th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51 Gray triggerfish                        | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 53 Ref onnivores       2       39.17       9.28       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <td>52 Coastal omnivores</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>1.05</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 Coastal omnivores                       | 2     | 2     | 2     | 2    | 2      | 2      | -    | 1.05  | 2        | 2     | 2             | -        | 2     |
| 54 Surface pelagics       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53 Reef omnivores                          | 2     | 39.17 | 9.28  | 2    | 2      | 2      | -    | 2     | 2        | 2     | 2             | -        | 2     |
| S5 large oceanic planktivores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54 Surface pelagics                        | -     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 150 Cealic plantitiones11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 Large oceanic planktivores              | 1 -   |       | -     | -    | -      | -      | -    | -     |          |       | -             | -        | -     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56 Oceanic planktivores                    | -     | -     | -     | -    | -      | -      | -    | -     | 2        | 2     | 2             | -        | -     |
| Sharane (string participant)       I.I.       I.I.I.       I.I.I. <thi.i.< th=""> <thi.i.< th="">       I.I.I.       I.I.I</thi.i.<></thi.i.<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 Sardine-berring-scad                    | 1 1   | 115   | 1 05  | 2    | 61 16  | 2      | 2    | 101   | 2        | 2     | 2             | 2        | 2     |
| Journal (yr)       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>57 Sarume-nering-stau<br/>58 Menhaden (Ovr)</td><td>1 1.1</td><td></td><td>1.05</td><td>-</td><td>01.10</td><td>-</td><td>-</td><td>101</td><td><b>~</b></td><td>-</td><td>2</td><td>2</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 Sarume-nering-stau<br>58 Menhaden (Ovr) | 1 1.1 |       | 1.05  | -    | 01.10  | -      | -    | 101   | <b>~</b> | -     | 2             | 2        | 2     |
| Serverinden (1yr)         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | So Menhaden (UVI)                          |       | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| b0 Menhaden (2yr)         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59 Menhaden (1yr)                          | 2     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| bit Menhaden (syr)       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       102       103 <td>60 Mennaden (Zyr)</td> <td>2</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 Mennaden (Zyr)                          | 2     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 62 Menhaden (4+yr)       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       1.09         64 Mullet       2       -       -       -       -       -       -       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61 Menhaden (3yr)                          | 2     | -     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | -     |
| 63 Anchowy-silverside-killifish       -       -       2       -       1.05       4.24       5       1.05       134       176       -       1.99         64 Mullet       2       -       -       -       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <td>62 Menhaden (4+yr)</td> <td>2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62 Menhaden (4+yr)                         | 2     | -     | -     | -    | -      | -      | -    |       | -        | -     | -             | -        | -     |
| -       2       -       2       -       1.05       4.24       5       1.05       1.34       1.76       -       1.99         66 Mullet       2       -       -       -       2       -       -       2       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <t< td=""><td>63 Anchovy-silverside-killifish</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.0</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 Anchovy-silverside-killifish            |       |       |       |      |        |        |      | 1.0   |          |       |               |          |       |
| 64 Mullet       2       -       -       -       2       -       -       -       2       -       -       -       2       2       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            | -     | 2     | -     | 2    | -      | 1.05   | 4.24 | 5     | 1.05     | 134   | 176           | -        | 1.99  |
| 65 Butterfish       -       -       -       -       -       -       1.05       -       2       2       2       -       2       2       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64 Mullet                                  | 2     | -     | -     | -    | -      | 2      | -    | -     | -        | -     | -             | -        | 2     |
| 66 Cephalopod         2         2         1.05         2         2         2         476         2         2         2         2         1.1         2           67 Pink shrimp         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         2         &lt;</th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65 Butterfish                              | -     | -     | -     | -    | -      | -      | 1.05 | -     | 2        | 2     | 2             | -        | 2     |
| 67 Pink shrimp         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         2         &lt;</th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 Cephalopod                              | 2     | 2     | 1.05  | 2    | 2      | 2      | 476  | 2     | 2        | 2     | 2             | 1.1      | 2     |
| 68 Brown shrimp       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       <th2< th="">       &lt;</th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67 Pink shrimn                             | 2     | 2     | 2     | 2    | 2      | 2      | 2    | 2     | 2        | 2     | 2             | 2        | 2     |
| 69         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         2         2</th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68 Brown shrimn                            | 2     | 2     | 2     | 2    | 2      | 2      | 2    | 2     | 2        | 2     | 2             | 2        | 2     |
| Contract stratup       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z <thz< th="">       Z       <thz< th=""></thz<></thz<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69 White shrimp                            | 2     | 2     | 2     | 2    | 2      | 6302   | 2    | 2     | 2        | 2     | 2             | 2        | 2     |
| 71 Sesile epifauna       2       112       17.10       2       2       1.03       1.03       2       2       2       1.99         71 Sesile epifauna       2       2       2       2       73       2       2       2       1.03       1.03       2       2       2       1.99         73 Zooplankton       2       7.24       1.05       1.99       596       23.22       8       8552       1.05       1.05       3689       1.1       1.99         73 Zooplankton       2       2       2       2       2       2       2       2       2       2       1.05       1.05       1.05       1.05       3689       1.1       1.99         73 Zooplankton       2       2       2       2       2       2       2       2       1.05       1.05       1.05       1.05       2       9782       1.09       1.99         75 Algae       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       <th2< th=""></th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 Crah                                    | 2     | 112   | 17 16 | 2    | 2      | 1 05   | 1 05 | 1 05  | 2        | 2     | 2             | 2        | 1 00  |
| 71 sessile epiratura       2       2       2       2       732       -       2       4024       1.05       2       2       1.11       2         72 Mobile epifauna       2       7.24       1.05       1.09       596       23.22       8       8552       1.05       1.05       3689       1.1       1.99         73 Zooplankton       2       2       2       2       2       2       2       2       2       2       1.05       1.05       3689       1.1       1.99         73 Zooplankton       2       6735       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1.05       2       2       2       1.99         73 Zooplankton       2       6735       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 <th2< th="">       2       <th2< th=""></th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 2     | 112   | 11.10 | 2    | 2      | 1.05   | 1.02 | 1.05  | 1 05     | 2     | 2             | <u>ک</u> | 1.99  |
| 72 Mooile epirauna     1/55       73 Zooplankton     2     7.24     1.05     1.99     596     23.22     8     8552     1.05     1.05     2     2     1.99       73 Zooplankton     2     2     2     2     2     2     2     1.05     1.05     2     2     1.53     24542       74 Infauna     2     6735     2     2     2497     368135     2     1.05     1.05     2     9782     1970     1.99       75 Algae     -     -     -     -     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2 <th< td=""><td>/1 Sessile epitauna</td><td>2</td><td>2</td><td>2</td><td>2</td><td>/32</td><td>-</td><td>1755</td><td>4024</td><td>1.05</td><td>2</td><td>2</td><td>1.1</td><td>2</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /1 Sessile epitauna                        | 2     | 2     | 2     | 2    | /32    | -      | 1755 | 4024  | 1.05     | 2     | 2             | 1.1      | 2     |
| 2       7.24       1.05       1.99       596       23.22       8       8552       1.05       1.05       3689       1.1       1.99         73 Zooplankton       2       2       2       2       2       2       2       2       1.05       1.05       3689       1.1       1.99         74 Infauna       2       6735       2       2       2       2       1.05       1.05       2       9782       1970       1.99         75 Algae       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72 Mobile epitauna                         | I .   |       |       |      |        |        | 1/55 |       |          |       |               |          |       |
| 73 Zooplankton       2       2       2       2       2       2       1.05       1.05       2       2       1.553       24542         74 Infauna       2       6735       2       2       2497       368135       2       1.05       1.05       2       9782       1970       1.99         75 Algae       -       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       3.99       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | 2     | /.24  | 1.05  | 1.99 | 596    | 23.22  | 8    | 8552  | 1.05     | 1.05  | 3689          | 1.1      | 1.99  |
| 74 Infauna       2       6735       2       2       2497 368135       2       1.05       1.05       2       9782       1970       1.99         75 Algae       -       -       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1.99       7       7.99       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9       7.9 <td< td=""><td>73 Zooplankton</td><td>2</td><td>2</td><td>2</td><td>2</td><td>-</td><td>2</td><td>2</td><td>1.05</td><td>1.05</td><td>2</td><td>2</td><td>1553</td><td>24542</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73 Zooplankton                             | 2     | 2     | 2     | 2    | -      | 2      | 2    | 1.05  | 1.05     | 2     | 2             | 1553     | 24542 |
| 75 Algae       -       -       -       -       -       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1.05       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       1.65       2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74 Infauna                                 | 2     | 6735  | 2     | 2    | 2497 3 | 368135 | 2    | 1.05  | 1.05     | 2     | 9782          | 1970     | 1.99  |
| 76 Seagrass         -         2         -         -         -         -         1.99           77 Phytoplankton         -         -         -         -         1.05         -         -         2           78 Detritus         2         934         2         2         2         1.05         2         1.89E+09         1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75 Algae                                   | -     | -     | -     | -    | -      | -      | -    | -     | 2        | 2     | 2             | 2        | 2     |
| 77 Phytoplankton         -         -         -         -         -         2         -         -         -         2         2         2         2         2         2         1.05         -         -         2         2         2         2         2         1.05         2         1.89E+09         1.99         1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76 Seagrass                                |       | 2     | -     | -    | -      | -      | -    | -     | -        | -     | -             | -        | 1.99  |
| 78 Detritus 2 934 2 2 2 2 1E+10 1.05 2 1E+10 1.89E+09 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77 Phytoplankton                           | -     | -     | -     | -    | -      | -      | -    | 1.05  | -        | -     | -             | -        | 2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78 Detritus                                | 2     | 934   | 2     | 2    | 2      | 2      | 2    | 1E+10 | 1.05     | 2     | <u>1</u> E+10 | 1.89E+09 | 1.99  |

## Table S3.1-Continued. Predation Vulnerability matrix from the base Ecosim run.Columns and rows represent predators and prey, respectively.Prey\predator404142434445464748491 Costal dolphins

| Prev \ predator                          | 40   | 41    | 42    | - 13  | - 44  | 45    | 46   | 47    | 48    | 40    | 50  | 51   | 52    |
|------------------------------------------|------|-------|-------|-------|-------|-------|------|-------|-------|-------|-----|------|-------|
| 1 Coastal dolphins                       | 40   | 41    | 42    | 45    | 44    | -15   | 40   | 47    | 40    | 45    | 50  | 51   | 52    |
| 2 Officience de la biere                 | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 2 Offshore dolphins                      | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 3 Baleen whales                          | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 4 Seabird                                | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 5 Sea turtle                             | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 6 Blacktip shark                         | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 7 Dusky shark                            | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 8 Sandbar shark                          | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 9 Large coastal sharks                   | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   |      | -     |
| 10 Large oceanic sharks                  | _    |       | -     | _     | _     | _     | _    |       | _     | _     |     | _    |       |
| 11 Atlantic charphose shark              | _    |       |       |       |       |       |      |       |       |       |     |      |       |
| 12 Cmall acastal sharks                  | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 12 Silidii Codstal Sildi Ks              | -    | -     | -     | 2     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 13 Yellowfin tuna                        | -    | -     | -     | 25.11 | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 14 Bluefin tuna                          | -    | -     | -     | 2     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 15 Other tunas                           | -    | -     | -     | 2     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 16 Billfish                              | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 17 Swordfish                             | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 18 Pelagic coastal piscivores            | -    | 2     | 2     | 2     | 2     | 2     | 2    | 2     | -     | -     | 2   |      | -     |
| 19 Amberiack                             | -    | 2     | 2     | 2     | 2     | 2     | 2    | 1.67  | -     | -     | 2   | -    | -     |
| 20 Cobia                                 |      |       |       | 2     |       | 2     |      |       | _     | _     | 2   |      |       |
| 21 King mackarol (0, 1)rr)               |      |       |       | 2     |       | 2     |      |       |       |       | 2   |      |       |
| 22 King macketer (0-191)                 | -    | -     | -     | 2     | -     | 2     | -    | -     | -     | -     | -   | -    | -     |
| 22 King mackerel (1+yr)                  | -    | -     | -     | 2     | -     | 2     | -    | -     | -     | -     | -   | -    | -     |
| 23 Spanish mackerel (0-1yr)              | -    | 2     | 2     | 2     | -     | 2     | -    | -     | -     | -     | -   | -    | -     |
| 24 Spanish mackerel (1+yr)               | -    | -     | -     | 2     | -     | 2     | -    | -     | -     | -     | -   | -    | -     |
| 25 Skates-rays                           | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 26 Gag grouper (0-3yr)                   | 2    |       | -     | -     |       | -     |      |       | -     | -     | 2   | -    | -     |
| 27 Gag grouper (3+yr)                    | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   |      | -     |
| 28 Bed grouper (0-3vr)                   | 2    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   |      | -     |
| 29 Red grouper (3+yr)                    | -    |       |       |       |       |       |      |       |       |       | 2   |      |       |
| 20 Vellewedge grouper (0.2vr)            | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 30 fellowedge grouper (0-syr)            | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 31 Yellowedge grouper (3+yr)             | -    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 32 Goliath grouper                       | 2    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 33 Deep-water grouper                    | 2    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 34 Shallow-water grouper                 | 2    | -     | -     | -     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 35 Red snapper (Oyr)                     | -    | -     | -     | -     | -     | -     | 2    | -     | -     | -     | -   | -    | -     |
| 36 Red snapper (1-2yr)                   | -    | -     | -     | -     | -     | -     | 2    | -     | -     | -     | -   | -    | -     |
| 37 Red snapper (3+yr)                    | _    |       | -     | _     | _     | _     |      |       | _     | _     |     | _    |       |
| 38 Vermilion snapper                     | _    |       |       |       | 2     | 2     | 2    |       |       |       |     |      |       |
| 20 Mutten snapper                        | -    | -     | -     | -     | 2     | 2     | 2    | -     | -     | -     | -   | -    | -     |
| 39 Mutton snapper                        | -    | -     | -     | -     | 2     | 2     | 2    | -     | -     | -     | -   | -    | -     |
| 40 Other snapper                         | -    | 2     | 2     | 2     | 2     | 2     | -    | -     | -     | -     | -   | -    | -     |
| 41 Coastal piscivores                    | -    | 2     | 2     | 2     | 2     | -     | 2    | 2     | -     | 2     | -   | -    | -     |
| 42 Sea trout                             | -    | 2     | 2     | 6.64  | 2     | -     | 2    | 1.97  | -     | -     | -   | -    | -     |
| 43 Oceanic piscivores                    | -    | -     | -     | 1.05  | 10.81 | -     | 2    | 2     | -     | -     | 2   | -    | -     |
| 44 Benthic piscivores                    | 2    | 2     | 2     | 2     | 2     | 2     | 2    | 2     | 1.18  | 2     | 2   |      | -     |
| 45 Reef piscivores                       | -    | -     | -     | 2     | 2     | 2     | -    | -     | _     | -     | 2   | -    | -     |
| 46 Reef invertebrate feeders             | 2    | 2     | 2     | 2     | 2     | 2 35  | 2    | 2     | 1 18  | 2     | 2   |      |       |
| 47 Demorsal seastal invertebrate feeders | 2    | 2     | 2     | 2     | 2     | 2.55  | 2    | 2     | 1.10  | 2     | 2   |      | 2     |
| 47 Demersal coastar invertebrate reeders | 2    | 2     | 2     | 2     | 2     | 2     | 2    | 2     | 1.16  | 2     | 2   | -    | 2     |
| 48 Red urum                              | -    | 2     | -     | -     | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 49 Benthic coastal invertebrate feeders  | 2    | 2     | 2     | 17.83 | 2     | 2.61  | 2    | 2     | 1.18  | 2     | 2   | 2    | 2     |
| 50 Tilefish                              | -    | -     | -     | 2     | -     | -     | -    | -     | -     | -     | 2   | -    | -     |
| 51 Gray triggerfish                      | 2    | -     | -     | 44.7  | -     | -     | -    | -     | -     | -     | -   | -    | -     |
| 52 Coastal omnivores                     | 2    | 2     | 2     | 2     | 2     | 2     | 2    | 2     | 1.18  | 2     | -   | -    | -     |
| 53 Reef omnivores                        | 2    | 21.15 | 2     | 2     | -     | 2     | 2    | 1.93  | 1.18  | -     | 2   | -    | -     |
| 54 Surface pelagics                      | 2    | 2     | 2     | 2     | 2     | 3.63  | 2    | 2     | -     | 2     | -   | 2    | -     |
| 55 Large oceanic planktivores            |      | -     | -     | 2     | -     | -     | -    | -     | -     | -     |     |      | -     |
| 56 Oceanic planktivores                  | _    |       |       | 2     | 2     | 2     | 2    | 2     |       |       | 2   |      |       |
| E7 Sardino borring coad                  | 2    |       |       | 24.41 | 76.91 | 4 20  | 2    | 2     | -     | -     | 2   | -    | -     |
| 57 Sarume-nerring-scau                   | 2    | 5.//  | 1.1   | 34.41 | /6.81 | 4.29  | 2    | 2     | -     | 2     | 2   | -    | 2     |
| 58 Menhaden (Uyr)                        | 2    | 2     | 10.83 | -     | 2     | -     | -    | 2     | 1.18  | 2     | -   | -    | -     |
| 59 Menhaden (1yr)                        | 2    | 2     | 13.8  | 2     | 2     | -     | -    | 2     | 1.18  | 2     | -   | -    | -     |
| 60 Menhaden (2yr)                        | 2    | 2     | 6.25  | 2     | 2     | -     | -    | 2     | 1.18  | 2     | -   | -    | -     |
| 61 Menhaden (3yr)                        | 2    | 2     | 2     | 2     | 2     | -     | -    | 2     | 1.18  | 2     | -   | -    | -     |
| 62 Menhaden (4+yr)                       | 2    | 2     | 2     | 2     | 2     | -     | -    | 2     | 1.18  | 2     | -   | -    | -     |
| 63 Anchovy-silverside-killifish          | 2    | 28.74 | 1.5   | 67.76 | 174   | 12.32 | 2    | 2     | 1.18  | 2     | -   | -    | 2     |
| 64 Mullet                                | 2    | 2     | 2     | 2     | 2     | 1.05  | -    | 2     | 1.18  | -     | -   | -    | -     |
| 65 Butterfish                            | 2    |       |       | 2     | 2     |       | _    | 2     |       | _     | 2   |      |       |
| 65 Conhalonad                            | 2    | 47.04 | 4.05  | 117   | 2     | 25.00 | 2    | 4.05  | 4.40  | 4.05  | 2   | 2    | 4.05  |
| C7 Disk shrime                           | 2    | 47.54 | 1.05  | 11/   | 2     | 35.08 | 2    | 1.05  | 1.18  | 1.05  | 2   | 2    | 1.05  |
| 67 PINK SHRIMP                           | 2    | 2     | 2     | 2     | 2     | 2     | 2    | 1.3   | 1.18  | 2     | 2   | 2    | 2     |
| bo Brown shrimp                          | 2    | 2     | 2     | 2     | 2     | 2     | 2    | 1.05  | 1.18  | 2     | 2   | 2    | 2     |
| 69 White shrimp                          | 2    | 2     | 2     | 2     | 2     | 39.68 | 2    | 2     | 1.18  | 2     | 2   | 2    | 2     |
| 70 Crab                                  | 2    | 29.33 | 1.52  | 2     | 2     | 3.95  | 2    | 2     | 1.18  | 2     | 2   | 2    | 2     |
| 71 Sessile epifauna                      | 2    | 2     | 2     | 2     | 2     | 431   | 2    | 9.66  | 1.18  | 148   | 1.1 | 1.99 | 1.05  |
| 72 Mobile epifauna                       | 2    | 2     | 1.05  | 3038  | 2     | 428   | 1.05 | 21.57 | 1.18  | 258   | 1.1 | 1.99 | 319   |
| 73 Zooplankton                           | 2    | 2     | 270   | 14951 | 2     | 1502  | 2    | 92,17 | 1.18  | 3.66  | 2   | 2    | 1.05  |
| 74 Infauna                               | 2    | 2     | 151   | 10272 | 2     | 1780  | 1 05 | 30 01 | 1 1 2 | 670   | 21  | 1 00 | 1/7   |
| 75 Algae                                 | 2    | 2     | 101   | 102/2 | 2     | 1205  | 1.05 | 1 05  | 1 10  | 1754  | 2.1 | 1.35 | 1 5 7 |
| 76 Soograss                              | 2    | 2     | 44.44 | 2     | 2     | -     | 2    | 1.05  | 1.10  | 1254  | -   | 2    | 1.52  |
| 70 Sedgidss                              | 2    | 2     | 4448  | 2     | 2     | 99826 | 2    | 3016  | 1.18  | 21.05 | -   | 2    | 65.06 |
| / / Phytoplankton                        | 2    | 2     | 1347  | -     | -     | 85440 | 2    | 1.05  | -     |       | -   | 2    | 1.05  |
| /o Detritus                              | 1.05 | 1.05  | 2     | 1E+10 | 1.05  | 1.05  | 1.05 | 1.05  | 1.18  | 4.72  | 2   | 2    | 1E+10 |

## Table S3.1-Continued. Predation Vulnerability matrix from the base Ecosim run. Columns and rows represent predators and prey, respectively. Prey\predator 53 54 55 56 57 58 59 60 61 62 I constal diploities

| 1 Coastal dolphins       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -  |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2 Offshore dolphins       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - |           |
| 3 Baleen whales       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -     |           |
| 4 Seabird       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -   |           |
| 4 Sealing     -     -     -     -     -     -     -       5 Sea turtle     -     -     -     -     -     -     -       6 Blacktip shark     -     -     -     -     -     -     -     -       7 Dusky shark     -     -     -     -     -     -     -     -     -       8 Sandbar shark     -     -     -     -     -     -     -     -       9 Large coeanic sharks     -     -     -     -     -     -     -     -       10 Large otherk     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| Searching     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                               |           |
| 7 Dusky shark     -     -     -     -     -     -     -     -       7 Dusky shark     -     -     -     -     -     -     -     -       8 Sandbar shark     -     -     -     -     -     -     -     -       9 Large coestal sharks     -     -     -     -     -     -     -     -       10 Large oceanic sharks     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 7 Dusky shark     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                           |           |
| 8 Sandbar shark     -     -     -     -     -     -     -       9 Large coastal sharks     -     -     -     -     -     -     -       10 Large oceanic sharks     -     -     -     -     -     -     -       11 Athrase shark     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 9 Large coastal sharks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 10 Large oceanic sharks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 11 Atlantic charphone chark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 12 Small coastal sharks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 13 Yellowfin tuna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 14 Bluefin tuna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 15 Other tunas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 16 Billfish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 17 Swordfish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 18 Pelagic coastal piscivores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 19 Amberjack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 20 Cobia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 21 King mackerel (0-1yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 22 King markerel (1+yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 23 Spanish mackerel (0-1)r/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 24 Spanish mackere (1+vr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 20 Gdg groupper (V-3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 27 Gg grouper (5+91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 20 Red grouper (v-3yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 29 Red grouper (3+yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 30 Yellowedge grouper (0-3yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 31 Yellowedge grouper (3+yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 32 Goliath grouper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 33 Deep-water grouper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 34 Shallow-water grouper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 35 Red snapper (0yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 36 Red snapper (1-2yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 37 Red snapper (3+yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 38 Vermilion snapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 39 Mutton snapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 40 Other snapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 41 Coastal piscivores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 43 Oreanic historyones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 4A Borthic nicitivores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 45 heef jourtebrate feeders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 40 neer investe loss checkers fonders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 49 Benthic coastal invertebrate feeders 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 50 Tilefish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 51 Gray triggerfish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 52 Coastal omnivores 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 53 Reef omnivores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 54 Surface pelagics - 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 55 Large oceanic planktivores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 56 Oceanic planktivores 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 57 Sardine-herring-scad - 1.05 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 58 Menhaden (0yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 59 Menhaden (1 vr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 60 Menhaden (2yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 61 Menhaden (3yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 62 Menhaden (Ayr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| oz weinaden (+ y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| of Numeric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| b5 Butterrish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| b6 Cephalopod - 35.04 2 2 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 67 Pink shrimp 2 2 - 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 2       |
| 68 Brown shrimp 2 2 - 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 2       |
| 69 White shrimp 2 2 - 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 2       |
| 70 Crab 85.56 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 71 Sessile epifauna 1.05 2 - 25.78 18.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 2       |
| 72 Mobile epifauna 3239 1.05 2 1.05 1.05 1.05 1.05 2 2 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.05 1.05 |
| 73 Zooplankton 6669 393 2 1.05 113 9.13 1.05 23.98 118 1.05 70.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05 1.05 |
| 74 Infauna 4947 2 - 1.05 1.05 2 2 2 2 2 66.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.05 2    |
| 75 Algae 38157 2 2 1.05 1.05 1.05 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05 2    |
| 76 Seagrass 437657 2 2 - 2 5869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.05      |
| 77 Phytoplankton 12 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 351432 2 2 21 97 94 82 07 1 05 66 80 2317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.05 1.05 |
| 78 Detritus 1E+10 1E+10 1E+10 1.05 1.05 1.05 1.05 1.05 1E+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.05 2    |

|                                                        |       | Jaalo |      | a p. o | ,     | -p 0 0 0 |       |        |      |
|--------------------------------------------------------|-------|-------|------|--------|-------|----------|-------|--------|------|
| Prey \ predator                                        | 66    | 67    | 68   | 69     | 70    | 71       | 72    | 73     | 74   |
| 1 Coastal dolphins                                     | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 2 Offshore dolphins                                    | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 5 Baleen Wildles                                       | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 4 Sedbilu                                              | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 5 Sed Lur Lie<br>6 Placktin chark                      | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 7 Ducku chark                                          | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 2 Sandhar shark                                        | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| Q Large coastal sharks                                 | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 10 Large oceanic sharks                                |       | -     | -    | -      | -     | -        | -     | -      | -    |
| 11 Atlantic sharphose shark                            |       |       |      |        |       |          |       | -      |      |
| 12 Small coastal sharks                                | _     |       | _    |        | _     | _        | _     | _      | _    |
| 13 Yellowfin tuna                                      | -     |       | -    |        | -     |          | -     | -      | _    |
| 14 Bluefin tuna                                        | _     |       | _    |        | _     | _        | _     | _      | _    |
| 15 Other tunas                                         | -     |       | -    |        | -     |          | -     | -      | _    |
| 16 Billfish                                            | -     |       | -    |        | -     | -        | -     | -      | -    |
| 17 Swordfish                                           | -     |       | -    | -      | -     |          | -     | -      | -    |
| 18 Pelagic coastal piscivores                          | -     |       | -    | -      | -     |          | -     | -      | -    |
| 19 Amberiack                                           | -     |       | -    | -      | -     |          | -     | -      | -    |
| 20 Cobia                                               | -     |       | -    | -      | -     |          | -     | -      | -    |
| 21 King mackerel (0-1yr)                               | -     | -     | -    | -      |       |          | -     | -      | -    |
| 22 King mackerel (1+yr)                                | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 23 Spanish mackerel (0-1yr)                            | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 24 Spanish mackerel (1+yr)                             | -     |       | -    | -      | -     | -        | -     | -      | -    |
| 25 Skates-rays                                         | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 26 Gag grouper (0-3yr)                                 | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 27 Gag grouper (3+yr)                                  | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 28 Red grouper (0-3yr)                                 | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 29 Red grouper (3+yr)                                  | -     | -     | -    | -      |       |          | -     | -      | -    |
| 30 Yellowedge grouper (0-3yr)                          | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 31 Yellowedge grouper (3+yr)                           | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 32 Goliath grouper                                     | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 33 Deep-water grouper                                  | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 34 Shallow-water grouper                               | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 35 Red snapper (0yr)                                   | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 36 Red snapper (1-2yr)                                 | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 37 Red snapper (3+yr)                                  | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 38 Vermilion snapper                                   | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 39 Mutton snapper                                      | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 40 Other snapper                                       | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 41 Coastal piscivores                                  | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 42 Sea trout                                           | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 43 Oceanic piscivores                                  | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 44 Benthic piscivores                                  | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 45 Reef piscivores                                     | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 46 Reef Invertebrate feeders                           | 2     | -     | -    | -      | 2     | -        | -     | -      | -    |
| 47 Demersal coastal invertebrate feeders               | 2     | -     | -    | -      | -     | -        | -     | -      | -    |
| 48 Ked drum<br>40 Penthia seastal invertebrate feeders | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 49 Benthic coastal invertebrate reeders                | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 50 TileTISN                                            | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 51 Gray triggeriisii                                   | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 52 Coastal Oninivores                                  | 2     | -     | -    | -      | 2     | -        | 4.89  | -      | 2    |
| 54 Surface pelagics                                    | 2     | -     | -    | -      | -     | -        | -     | -      | -    |
| 55 Large oceanic planktivores                          | -     | -     | -    | -      | -     | -        | -     | -      | -    |
| 56 Oceanic planktivores                                |       | -     | -    | -      | -     | -        | -     | -      | -    |
| 57 Sardine-berring-scad                                | 25.66 |       |      |        | 2     |          |       |        |      |
| 58 Menhaden (0vr)                                      | 25.00 |       | _    |        | -     |          | _     | _      | _    |
| 59 Menhaden (1yr)                                      |       | _     | _    |        | _     | _        | _     |        | _    |
| 60 Menhaden (2yr)                                      | _     |       | _    |        | _     | _        | _     | _      | _    |
| 61 Menhaden (3yr)                                      | -     |       | -    |        | -     |          | -     | -      | _    |
| 62 Menhaden (4+vr)                                     | -     |       | -    |        | -     | -        | -     | -      | -    |
| 63 Anchovy-silverside-killifish                        | 2.82  |       | -    | -      | 2     |          | -     | -      | -    |
| 64 Mullet                                              | -     |       | -    | -      | 2     | -        | -     | -      | -    |
| 65 Butterfish                                          | -     |       | -    | -      | -     | -        | -     | -      | -    |
| 66 Cephalopod                                          | 22.37 |       | -    | -      | 2     | -        | 1.05  | -      | -    |
| 67 Pink shrimp                                         | -     |       | -    | -      | 2     |          | -     |        | -    |
| 68 Brown shrimp                                        | -     | -     | -    | -      | 2     | -        | -     |        | -    |
| 69 White shrimp                                        | -     | -     | -    | -      | 2     | -        | -     |        | -    |
| 70 Crab                                                | -     | -     | -    | -      | 2     | -        | -     | -      | -    |
| 71 Sessile epifauna                                    | -     | 2     | 2    | 2      | -     | -        | 2.21  | -      | -    |
| 72 Mobile epifauna                                     | 19.69 | 2     | 2    | 2      | 96.4  | 2        | 13.76 |        | 2    |
| 73 Zooplankton                                         | 16.9  | -     | -    | -      | -     | 187      | -     | 3.04   | -    |
| 74 Infauna                                             | 1.05  | 2     | 2    | 2      | 1.1   | 2        | 4.44  |        | 6.02 |
| 75 Algae                                               | -     | 2     | 1.99 | 1.05   | 2     | -        | 1.05  | -      | -    |
| 76 Seagrass                                            | -     | -     | -    | -      | -     | -        | 1.05  | -      | -    |
| 77 Phytoplankton                                       | -     | 2     | 1.99 | 3371   | -     | 71.49    | 71.23 | 5.03   | 1.05 |
| 78 Detritus                                            | 1.05  | 2     | 1.99 | 1.5    | 1E+10 | 1E+10    | 1.05  | 149460 | 1.05 |

 Table S3.1-Continued. Predation Vulnerability matrix from the base Ecosim run.

 Columns and rows represent predators and prey, respectively.

 Prey\predator

 1 Coastal dolphins
 66
 67
 68
 69
 70
 71
 72
 73
 74